YOLOv9有效提点|加入BAM、CloFormer、Reversible Column Networks、Lskblock等几十种注意力机制(二)

 


专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!


一、本文介绍

 本文只有代码注意力模块简介YOLOv9中的添加教程:可以看这篇文章。

YOLOv9有效提点|加入SE、CBAM、ECA、SimAM等几十种注意力机制(一)


CloFormer:《Rethinking Local Perception in Lightweight Vision Transformer》

        CloFormer是一种轻量级视觉转换器,它通过利用上下文感知的本地增强,提高了在图像分类、目标检测和语义分割等任务上的性能。CloFormer通过引入一种名为AttnConv的卷积操作,结合共享权重和上下文感知权重,有效地捕捉了高频率的本地信息。实验结果表明,CloFormer在各种视觉任务中具有显著优势。

class AttnMap(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.act_block = nn.Sequential(
                            nn.Conv2d(dim, dim, 1, 1, 0),
                            MemoryEfficientSwish(),
                            nn.Conv2d(dim, dim, 1, 1, 0)
                            #nn.Identity()
                         )
    def forward(self, x):
        return self.act_block(x)

class EfficientAttention(nn.Module):

    def __init__(self, dim, num_heads, group_split: List[int], kernel_sizes: List[int], window_size=7, 
                 attn_drop=0., proj_drop=0., qkv_bias=True):
        super().__init__()
        assert sum(group_split) == num_heads
        assert len(kernel_sizes) + 1 == len(group_split)
        self.dim = dim
        self.num_heads = num_heads
        self.dim_head = dim // num_heads
        self.scalor = self.dim_head ** -0.5
        self.kernel_sizes = kernel_sizes
        self.window_size = window_size
        self.group_split = group_split
        convs = []
        act_blocks = []
        qkvs = []
        #projs = []
        for i in range(len(kernel_sizes)):
            kernel_size = kernel_sizes[i]
            group_head = group_split[i]
            if group_head == 0:
                continue
            convs.append(nn.Conv2d(3*self.dim_head*group_head, 3*self.dim_head*group_head, kernel_size,
                         1, kernel_size//2, groups=3*self.dim_head*group_head))
            act_blocks.append(AttnMap(self.dim_head*group_head))
            qkvs.append(nn.Conv2d(dim, 3*group_head*self.dim_head, 1, 1, 0, bias=qkv_bias))
            #projs.append(nn.Linear(group_head*self.dim_head, group_head*self.dim_head, bias=qkv_bias))
        if group_split[-1] != 0:
            self.global_q = nn.Conv2d(dim, group_split[-1]*self.dim_head, 1, 1, 0, bias=qkv_bias)
            self.global_kv = nn.Conv2d(dim, group_split[-1]*self.dim_head*2, 1, 1, 0, bias=qkv_bias)
            #self.global_proj = nn.Linear(group_split[-1]*self.dim_head, group_split[-1]*self.dim_head, bias=qkv_bias)
            self.avgpool = nn.AvgPool2d(window_size, window_size) if window_size!=1 else nn.Identity()

        self.convs = nn.ModuleList(convs)
        self.act_blocks = nn.ModuleList(act_blocks)
        self.qkvs = nn.ModuleList(qkvs)
        self.proj = nn.Conv2d(dim, dim, 1, 1, 0, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj_drop = nn.Dropout(proj_drop)

    def high_fre_attntion(self, x: torch.Tensor, to_qkv: nn.Module, mixer: nn.Module, attn_block: nn.Module):
        '''
        x: (b c h w)
        '''
        b, c, h, w = x.size()
        qkv = to_qkv(x) #(b (3 m d) h w)
        qkv = mixer(qkv).reshape(b, 3, -1, h, w).transpose(0, 1).contiguous() #(3 b (m d) h w)
        q, k, v = qkv #(b (m d) h w)
        attn = attn_block(q.mul(k)).mul(self.scalor)
        attn = self.attn_drop(torch.tanh(attn))
        res = attn.mul(v) #(b (m d) h w)
        return res
        
    def low_fre_attention(self, x : torch.Tensor, to_q: nn.Module, to_kv: nn.Module, avgpool: nn.Module):
        '''
        x: (b c h w)
        '''
        b, c, h, w = x.size()
        
        q = to_q(x).reshape(b, -1, self.dim_head, h*w).transpose(-1, -2).contiguous() #(b m (h w) d)
        kv = avgpool(x) #(b c h w)
        kv = to_kv(kv).view(b, 2, -1, self.dim_head, (h*w)//(self.window_size**2)).permute(1, 0, 2, 4, 3).contiguous() #(2 b m (H W) d)
        k, v = kv #(b m (H W) d)
        attn = self.scalor * q @ k.transpose(-1, -2) #(b m (h w) (H W))
        attn = self.attn_drop(attn.softmax(dim=-1))
        res = attn @ v #(b m (h w) d)
        res = res.transpose(2, 3).reshape(b, -1, h, w).contiguous()
        return res

    def forward(self, x: torch.Tensor):
        '''
        x: (b c h w)
        '''
        res = []
        for i in range(len(self.kernel_sizes)):
            if self.group_split[i] == 0:
                continue
            res.append(self.high_fre_attntion(x, self.qkvs[i], self.convs[i], self.act_blocks[i]))
        if self.group_split[-1] != 0:
            res.append(self.low_fre_attention(x, self.global_q, self.global_kv, self.avgpool))
        return self.proj_drop(self.proj(torch.cat(res, dim=1)))

《Reversible Column Networks》

        Reversible Column Networks一种新的神经网络设计范式——可逆列网络(RevCol)。RevCol主要由多个子网络(称为“列”)的副本组成,这些子网络之间使用了多级可逆连接。这种架构方案使得RevCol的行为与传统的网络非常不同:在正向传播过程中,当特征通过每个列时,它们被逐渐解开,同时保持总信息量,而不是像其他网络那样进行压缩或丢弃。

 这个暂时没调试,代码地址:RevCol/models/revcol.py at main · megvii-research/RevCol (github.com)icon-default.png?t=N7T8https://github.com/megvii-research/RevCol/blob/main/models/revcol.py


《BAM: Bottleneck Attention Module》

        瓶颈注意模块(BAM)关注深度神经网络中注意力机制的影响,提出了一个简单而有效的注意力模块,即瓶颈注意模块(BAM),可以与任何前馈卷积神经网络集成,沿着两个不同的路径(通道和空间)推断注意力映射。 将模块放在模型的每个瓶颈处(特征映射产生降采样),构建一个具有多个参数的分层注意,可以与任何前馈模型以端到端方式进行训练。

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.shape[0], -1)


class ChannelAttention(nn.Module):
    def __init__(self, channel, reduction=16, num_layers=3):
        super().__init__()
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        gate_channels = [channel]
        gate_channels += [channel // reduction] * num_layers
        gate_channels += [channel]

        self.ca = nn.Sequential()
        self.ca.add_module('flatten', Flatten())
        for i in range(len(gate_channels) - 2):
            self.ca.add_module('fc%d' % i, nn.Linear(gate_channels[i], gate_channels[i + 1]))
            self.ca.add_module('bn%d' % i, nn.BatchNorm1d(gate_channels[i + 1]))
            self.ca.add_module('relu%d' % i, nn.ReLU())
        self.ca.add_module('last_fc', nn.Linear(gate_channels[-2], gate_channels[-1]))

    def forward(self, x):
        res = self.avgpool(x)
        res = self.ca(res)
        res = res.unsqueeze(-1).unsqueeze(-1).expand_as(x)
        return res


class SpatialAttention(nn.Module):
    def __init__(self, channel, reduction=16, num_layers=3, dia_val=2):
        super().__init__()
        self.sa = nn.Sequential()
        self.sa.add_module('conv_reduce1',
                           nn.Conv2d(kernel_size=1, in_channels=channel, out_channels=channel // reduction))
        self.sa.add_module('bn_reduce1', nn.BatchNorm2d(channel // reduction))
        self.sa.add_module('relu_reduce1', nn.ReLU())
        for i in range(num_layers):
            self.sa.add_module('conv_%d' % i, nn.Conv2d(kernel_size=3, in_channels=channel // reduction,
                                                        out_channels=channel // reduction, padding=autopad(3, None, dia_val), dilation=dia_val))
            self.sa.add_module('bn_%d' % i, nn.BatchNorm2d(channel // reduction))
            self.sa.add_module('relu_%d' % i, nn.ReLU())
        self.sa.add_module('last_conv', nn.Conv2d(channel // reduction, 1, kernel_size=1))

    def forward(self, x):
        res = self.sa(x)
        res = res.expand_as(x)
        return res


class BAMBlock(nn.Module):
    def __init__(self, channel=512, reduction=16, dia_val=2):
        super().__init__()
        self.ca = ChannelAttention(channel=channel, reduction=reduction)
        self.sa = SpatialAttention(channel=channel, reduction=reduction, dia_val=dia_val)
        self.sigmoid = nn.Sigmoid()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, _, _ = x.size()
        sa_out = self.sa(x)
        ca_out = self.ca(x)
        weight = self.sigmoid(sa_out + ca_out)
        out = (1 + weight) * x
        return out

《Large Selective Kernel Network for Remote Sensing Object Detection》

         LSKnet是一种用于遥感目标检测的大规模选择性核网络,改论文提出了远程感应目标检测新方法LSKNet,这种网络可以动态地调整其大的空间感受野,以更好地模拟远程感应场景中不同物体的范围上下文。文章中提到,这是首次在远程感应目标检测领域探索大型和选择性核机制。

class LSKblock(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv0 = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
        self.conv_spatial = nn.Conv2d(dim, dim, 7, stride=1, padding=9, groups=dim, dilation=3)
        self.conv1 = nn.Conv2d(dim, dim//2, 1)
        self.conv2 = nn.Conv2d(dim, dim//2, 1)
        self.conv_squeeze = nn.Conv2d(2, 2, 7, padding=3)
        self.conv = nn.Conv2d(dim//2, dim, 1)

    def forward(self, x):   
        attn1 = self.conv0(x)
        attn2 = self.conv_spatial(attn1)

        attn1 = self.conv1(attn1)
        attn2 = self.conv2(attn2)
        
        attn = torch.cat([attn1, attn2], dim=1)
        avg_attn = torch.mean(attn, dim=1, keepdim=True)
        max_attn, _ = torch.max(attn, dim=1, keepdim=True)
        agg = torch.cat([avg_attn, max_attn], dim=1)
        sig = self.conv_squeeze(agg).sigmoid()
        attn = attn1 * sig[:,0,:,:].unsqueeze(1) + attn2 * sig[:,1,:,:].unsqueeze(1)
        attn = self.conv(attn)
        return x * attn

 


http://www.niftyadmin.cn/n/5402163.html

相关文章

麒麟银河操作系统V10部署ffmpeg(也能用于Linux系统)

麒麟银河操作系统V10部署ffmpeg(也能用于Linux系统) 部署ffmpeg用来处理视频的各种操作 想使用ffmpeg,要先安装nasm,yasm,x264之后,否则会报错 nkvers 查看麒麟操作系统版本 cat /proc/version #查看linux版本信息 uname -a …

C++面试干货---带你梳理常考的面试题(一)

顾得泉:个人主页 个人专栏:《Linux操作系统》 《C从入门到精通》 《LeedCode刷题》 键盘敲烂,年薪百万! 1.C和C的区别 1.语法和特性:C是一种过程式编程语言,而C是一种面向对象编程语言。C在C的基础上增加…

电子电器架构新趋势 —— 最佳着力点:域控制器

电子电器架构新趋势 —— 最佳着力点:域控制器 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师(Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师…

UE4 Niagara 关卡3.4官方案例解析

Texture sampling is only supported on the GPU at the moment.(纹理采样目前仅在GPU上受支持) 效果:textures can be referenced within GPU particle systems。this demo maps a texture to a grid of particles(纹理可以在GPU粒子系统中被引用这个演…

03.柔性事务

柔性事务 1.介绍 最终一致性事务模型并不要求参与事务的各个节点数据时刻保持一致,允许其存在中间状态,只要一段时间后,能够达到数据的最终一致状态即可,最终一致性事务模型是基于Base理论的 2.分类和方案 通知型:…

基于springboot+vue的乐享田园系统

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

alpine创建lnmp环境alpine安装nginx+php5.6+mysql

前言 制作lnmp环境,你可以在alpine基础镜像中安装相关的服务,也可以直接使用Dockerfile创建自己需要的环境镜像。 注意:提前确认自己的alpine版本,本次创建基于alpine3.6进行创建,官方在一些版本中删除了php5 1、拉取…

数据结构 栈和队列 力扣例题AC——代码以及思路记录

20. 有效的括号 给定一个只包括 (,),{,},[,] 的字符串 s ,判断字符串是否有效。 有效字符串需满足: 左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括号都有一个对应…