Pytorch-SGD算法解析

news/2024/7/10 23:03:02 标签: yolo, SGD, 随机梯度下降

关注B站可以观看更多实战教学视频:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频 (bilibili.com)

SGD,即随机梯度下降(Stochastic Gradient Descent),是机器学习中用于优化目标函数的迭代方法,特别是在处理大数据集和在线学习场景中。与传统的批量梯度下降(Batch Gradient Descent)不同,SGD在每一步中仅使用一个样本来计算梯度并更新模型参数,这使得它在处理大规模数据集时更加高效。

SGD_4">SGD算法的基本步骤

  1. 初始化参数:选择初始参数值,可以是随机的或者基于一些先验知识。
  2. 随机选择样本:从数据集中随机选择一个样本。
  3. 计算梯度:计算损失函数关于当前参数的梯度。
  4. 更新参数:沿着负梯度方向更新参数。
  5. 重复:重复步骤2-4,直到满足停止条件(如达到预设的迭代次数或损失函数的改变小于某个阈值)。

SGDPython_12">SGD的Python代码示例:

python实现

假设我们要使用SGD来优化一个简单的线性回归模型。

import numpy as np  
  
# 目标函数(损失函数)和其梯度  
def loss_function(w, b, x, y):  
    return np.sum((y - (w * x + b)) ** 2) / len(x)  
  
def gradient_function(w, b, x, y):  
    dw = -2 * np.sum((y - (w * x + b)) * x) / len(x)  
    db = -2 * np.sum(y - (w * x + b)) / len(x)  
    return dw, db  
  
# SGD算法  
def sgd(x, y, learning_rate=0.01, epochs=1000):  
    # 初始化参数  
    w = np.random.rand()  
    b = np.random.rand()  
      
    # 存储每次迭代的损失值,用于可视化  
    losses = []  
      
    for i in range(epochs):  
        # 随机选择一个样本(在这个示例中,我们没有实际进行随机选择,而是使用了整个数据集。在大数据集上,你应该随机选择一个样本或小批量样本。)  
        # 注意:为了简化示例,这里我们实际上使用的是批量梯度下降。在真正的SGD中,你应该在这里随机选择一个样本。  
          
        # 计算梯度  
        dw, db = gradient_function(w, b, x, y)  
          
        # 更新参数  
        w = w - learning_rate * dw  
        b = b - learning_rate * db  
          
        # 记录损失值  
        loss = loss_function(w, b, x, y)  
        losses.append(loss)  
          
        # 每隔一段时间打印损失值(可选)  
        if i % 100 == 0:  
            print(f"Epoch {i}, Loss: {loss}")  
      
    return w, b, losses  
  
# 示例数据(你可以替换为自己的数据)  
x = np.array([1, 2, 3, 4, 5])  
y = np.array([2, 4, 6, 8, 10])  
  
# 运行SGD算法  
w, b, losses = sgd(x, y)  
print(f"Optimized parameters: w = {w}, b = {b}")

解析

  • 在上面的代码中,我们首先定义了损失函数和它的梯度。对于线性回归,损失函数通常是均方误差。
  • sgd函数实现了SGD算法。它接受输入数据x和标签y,以及学习率和迭代次数作为参数。
  • 在每次迭代中,我们计算损失函数关于参数wb的梯度,并使用这些梯度来更新参数。
  • 我们还记录了每次迭代的损失值,以便稍后可视化算法的收敛情况。
  • 最后,我们打印出优化后的参数值。在实际应用中,你可能还需要使用这些参数来对新数据进行预测。

在PyTorch中,SGD随机梯度下降)是一种基本的优化器,用于调整模型的参数以最小化损失函数。下面是torch.optim.SGD的参数解析和一个简单的用例。

SGDPytorch_79">SGD的Pytorch代码示例:

参数解析

torch.optim.SGD的主要参数如下:

  1. params (iterable):待优化的参数,或者是定义了参数的模型的迭代器。
  2. lr (float):学习率。这是更新参数的步长大小。较小的值会导致更新更精细,而较大的值可能会导致训练过程不稳定。这是SGD优化器的一个关键参数。
  3. momentum (float, optional):动量因子 (default: 0)。该参数加速了SGD在相关方向上的收敛,并抑制了震荡。
  4. dampening (float, optional):动量的抑制因子 (default: 0)。增加此值可以减少动量的影响。在实际应用中,这个参数的使用较少。
  5. weight_decay (float, optional):权重衰减 (L2 penalty) (default: 0)。通过向损失函数添加与权重向量平方成比例的惩罚项,来防止过拟合。
  6. nesterov (bool, optional):是否使用Nesterov动量 (default: False)。Nesterov动量是标准动量方法的一个变种,它在计算梯度时使用了未来的近似位置。

用例

下面是一个使用SGD优化器的简单例子:

import torch  
import torch.nn as nn  
import torch.optim as optim  
  
# 定义一个简单的模型  
model = nn.Sequential(  
    nn.Linear(10, 5),  
    nn.ReLU(),  
    nn.Linear(5, 2),  
)  
  
# 定义损失函数  
criterion = nn.CrossEntropyLoss()  
  
# 定义优化器  
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.001)  
  
# 假设有输入数据和目标  
input_data = torch.randn(1, 10)  
target = torch.tensor([1])  
  
# 训练循环(这里只展示了一次迭代)  
for epoch in range(1):  # 通常会有多个 epochs  
    # 前向传播  
    output = model(input_data)  
      
    # 计算损失  
    loss = criterion(output, target)  
      
    # 反向传播  
    optimizer.zero_grad()  # 清除之前的梯度  
    loss.backward()  # 计算当前梯度  
      
    # 更新参数  
    optimizer.step()  # 应用梯度更新  
  
    # 打印损失  
    print(f'Epoch {epoch+1}, Loss: {loss.item()}')

在这个例子中,我们创建了一个简单的两层神经网络模型,并使用SGD优化器来更新模型的参数。在训练循环中,我们执行了前向传播来计算模型的输出,然后计算了损失,通过调用loss.backward()执行了反向传播来计算梯度,最后通过调用optimizer.step()更新了模型的参数。在每次迭代开始时,我们使用optimizer.zero_grad()来清除之前累积的梯度,这是非常重要的步骤,因为PyTorch默认会累积梯度。


http://www.niftyadmin.cn/n/5381863.html

相关文章

深入浅出熟悉OpenAI最新大作Sora文生视频大模型

蠢蠢欲动,惴惴不安,朋友们我又来了,这个春节真的过的是像过山车,Gemini1.5 PRO还没过劲,OpenAI又放大招,人类真的要认输了吗,让我忍不住想要再探究竟,到底是什么让文生视频发生了质的…

游泳耳机选购指南:哪个游泳耳机品牌性价比最高?

在进行水上运动时,音乐无疑是我们最好的伴侣。然而,普通的耳机在水中无法正常工作,因此选择一款合适的游泳耳机就显得尤为重要。今天,我们就来聊一聊如何挑选一款性价比高的游泳耳机。 首先,我们需要考虑的是防水性能。…

【webpack】基础介绍

当我们深入分析Webpack时,可以更加详细地了解它的工作原理、构建流程、常用配置和插件。 工作原理: 解析模块: Webpack从入口文件开始,递归地解析模块之间的依赖关系,构建一个依赖图。解析过程中,Webpack会…

2.Angular组件概述

组件 Angular 组件概述 组件是 Angular 应用的主要构造块。每个组件包括如下部分: 一个 HTML 模板,用于声明页面要渲染的内容一个用于定义行为的 TypeScript 类一个 CSS 选择器,用于定义组件在模板中的使用方式要应用在模板上的 CSS 样式&am…

微信小程序按需注入和用时注入

官网链接 按需注入 {"lazyCodeLoading": "requiredComponents" }注意事项 启用按需注入后,小程序仅注入当前访问页面所需的自定义组件和页面代码。未访问的页面、当前页面未声明的自定义组件不会被加载和初始化,对应代码文件将不…

【吴恩达·机器学习】第二章:单变量线性回归模型(代价函数、梯度下降、学习率、batch)

博主简介:努力学习的22级计算机科学与技术本科生一枚🌸博主主页: Yaoyao2024每日一言🌼: 勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。 ——《朗读者》 0、声明 本系列博客文章是博主本人根据吴…

洛谷 P1019 [NOIP2000 提高组] 单词接龙

参考代码 #include <bits/stdc.h> using namespace std; string s[25]; int vis[25], ans, now 1, n; void dfs(int k) { ans max(ans, now); for(int i 1; i < n; i) if(vis[i] < 2) { for(int j 0; j < s[k].length(); j) …

5G网络eMBB、uRLLC、mMTC

ITU&#xff08;国际电信联盟&#xff09;于2015年9月正式定义了5G的三大应用场景&#xff1a;eMBB&#xff08;增强型移动宽带&#xff09;、uRLLC&#xff08;低时延高可靠通信&#xff09;、mMTC&#xff08;海量物联网通信&#xff09;。 eMBB是4G MBB&#xff08;移动宽带…