YOLOV5 人员检测项目【学习笔记(十一)】

news/2024/7/10 22:55:39 标签: YOLO, c++, 深度学习

这篇博客为修改过后的转载,因为没有转载链接,所以选了原创

文章目录

    • 一、安装Pytorch 及 YOLO v5
      • 1.1 安装GPU版 pytorch
      • 1.2 安装YOLO v5所需依赖
    • 二、YOLO v5训练自定义数据
      • 2.1 标注数据
        • 2.1.1 安装labelImg
        • 2.1.2 标注
      • 2.2 准备数据集
        • 2.2.1 组织目录结构
        • 2.2.2 创建 dataset.yaml
      • 2.3 选择合适的预训练模型
      • 2.4 训练
      • 2.5 可视化
        • 2.5.1 wandb
        • 2.5.2 Tensorboard
      • 2.6 测试评估模型
        • 2.6.1 测试
        • 2.6.2 评估
    • 三、yolov5模型导出ONNX
      • 3.1 工作机制
      • 3.2 修改yolov5 代码,输出ONNX
      • 3.3 具体修改细节
    • 四、TensorRT部署
      • 4.1 模型构建
      • 4.2 模型的推理
      • 4.3 TensorRT plugin
      • 4.4 INT8、FP16量化对比
      • 4.6人员闯入的应用开发
      • 4.7 利用DeepStream进行深度优化,并对比
      • 4.8 YoloV5 DeepStream部署

YOLO_v5_2">一、安装Pytorch 及 YOLO v5

1.1 安装GPU版 pytorch

  • 方法一:conda虚拟环境

    首先,请参考上一节课将GPU driver, cuda, cudnn先安装完毕。

# 使用conda虚拟环境(安装文档:https://docs.conda.io/en/latest/miniconda.html)

# 创建conda虚拟环境,参考你选择的版本安装即可

# 最新版:https://pytorch.org/get-started/locally/
# 历史版本:https://pytorch.org/get-started/previous-versions/
  • 方法二:docker 方式(推荐)

    使用docker主要是因为与主机性能区别不大,且配置简单,只需要安装GPU驱动,不用考虑安装Pytorch指定的CUDA,CuDNN等(容器内部已有);

    注意:如果你已经在虚拟机、云GPU、Jetson等平台,则没有必要使用docker,因为本身性能可能不是太好或者已经就在docker里面。

# 安装docker

sudo apt-get remove docker docker-engine docker.io containerd runc

sudo apt-get update
sudo apt-get install \
    ca-certificates \
    curl \
    gnupg \
    lsb-release

sudo mkdir -m 0755 -p /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg

echo \
  "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \
  $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin

sudo apt-get install nvidia-container2

sudo systemctl restart docker

具体安装细节可以参考docker文档:https://docs.docker.com/engine/install/ubuntu/。 然后安装nvidia-container-toolkit, 依次运行以下命令

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
      && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
      && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
            sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
            sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit

安装完成后,拉取pytorch镜像以进行测试(这里我们使用pytorch版本为1.12.0a0+2c916ef):

# $(pwd):/app 表示把当前host工作路径挂载到容器的/app目录下
# --name env_pyt_1.12 表示容器的名称是env_pyt_1
docker run --gpus all -it --name env_pyt_1.12 -v $(pwd):/app nvcr.io/nvidia/pytorch:22.03-py3 

# 容器内部检查pytorch可用性
$ python
>>> import torch
>>> torch.__version__
>>> print(torch.cuda.is_available())
True

经过漫长的拉取后,我们便可以进入docker的命令行中进行操作。

在nvidia的NGC container地址中https://catalog.ngc.nvidia.com/containers,我们可以找到很多好用的nvidia container。

Vs code 提供的插件可以让我们访问容器内部:ms-vscode-remote.remote-containers

YOLO_v5_89">1.2 安装YOLO v5所需依赖

  • 安装
# 克隆地址
git clone https://github.com/ultralytics/yolov5.git
# 进入目录
cd yolov5	
# 选择分支,这里使用了特定版本的yolov5,主要是避免出现兼容问题
git checkout a80dd66efe0bc7fe3772f259260d5b7278aab42f

# 安装依赖(如果是docker环境,要进入容器环境后再安装)
pip3 install -r requirements.txt		
  • 下载预训练权重文件

下载地址:https://github.com/ultralytics/yolov5,附件位置:3.预训练模型/,将权重文件放到weights目录下:

  • 测试是否安装成功
python detect.py --source ./data/images/ --weights weights/yolov5s.pt --conf-thres 0.4

docker容器内部可能报错:AttributeError: partially initialized module ‘cv2’ has no attribute ‘_registerMatType’ (most likely due to a circular import),使用pip3 install "opencv-python-headless<4.3"

如果一切配置成功,则可以看到以下检测结果

YOLO_v5_122">二、YOLO v5训练自定义数据

2.1 标注数据

2.1.1 安装labelImg

需要在有界面的主机上安装,远程ssh无法使用窗口

# 建议使用conda虚拟环境
# 安装
pip install labelImg
# 启动
labelImg
2.1.2 标注

按照视频示例教程进行标注,保存路径下会生成txt YOLO格式标注文件。

  • 一张图片对应一个txt标注文件(如果图中无所要物体,则无需txt文件);
  • txt每行一个物体(一张图中可以有多个标注);
  • 每行数据格式:类别id、x_center y_center width height
  • xywh必须归一化(0-1),其中x_center、width除以图片宽度,y_center、height除以图片高度;
  • 类别id必须从0开始计数。

2.2 准备数据集

2.2.1 组织目录结构
. 工作路径
├── datasets
│   └── person_data
│       ├── images
│       │   ├── train
│       │   │   └── demo_001.jpg
│       │   └── val
│       │       └── demo_002.jpg
│       └── labels
│           ├── train
│           │   └── demo_001.txt
│           └── val
│               └── demo_002.txt
└── yolov5

要点:

  • datasetsyolov5同级目录;
  • 图片 datasets/person_data/images/train/{文件名}.jpg对应的标注文件在 datasets/person_data/labels/train/{文件名}.txtYOLO会根据这个映射关系自动寻找(images换成labels);
  • 训练集和验证集
    • images文件夹下有trainval文件夹,分别放置训练集和验证集图片;
    • labels文件夹有trainval文件夹,分别放置训练集和验证集标签(yolo格式);
2.2.2 创建 dataset.yaml

复制yolov5/data/coco128.yaml一份,比如为coco_person.yaml

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/person_data  # 数据所在目录
train: images/train  # 训练集图片所在位置(相对于path)
val:  images/val # 验证集图片所在位置(相对于path)
test:  # 测试集图片所在位置(相对于path)(可选)

# 类别
nc: 5  # 类别数量
names: ['pedestrians','riders','partially-visible-person','ignore-regions','crowd'] # 类别标签名

2.3 选择合适的预训练模型

官方权重下载地址:https://github.com/ultralytics/yolov5

根据你的设备,选择合适的预训练模型,具体模型比对如下:

复制models下对应模型的yaml文件,重命名,比如课程另存为yolov5s_person.yaml,并修改其中:

# nc: 80  # 类别数量
nc: 5  # number of classes

2.4 训练

下载对应的预训练模型权重文件,可以放到weights目录下,设置本机最好性能的各个参数,即可开始训练,课程中训练了以下参数:

# yolov5s 
python ./train.py --data ./data/coco_person.yaml --cfg ./models/yolov5s_person.yaml --weights ./weights/yolov5s.pt --batch-size 32 --epochs 120 --workers 0 --name s_120 --project yolo_person_s

更多参数见train.py

训练结果在yolo_person_s/中可见,一般训练时间在几个小时以上。

2.5 可视化

2.5.1 wandb

YOLO官网推荐使用https://wandb.ai/。

  • 去官网注册账号;
  • 获取key秘钥,地址:https://wandb.ai/authorize
  • 使用pip install wandb安装包;
  • 使用wandb login粘贴秘钥后登录;
  • 打开网站即可查看训练进展。
2.5.2 Tensorboard

tensorboard --logdir=./yolo_person_s

2.6 测试评估模型

2.6.1 测试

测试媒体位置:4.老师训练结果/

# 如                                                             
python detect.py --source ./000057.jpg --weights ./yolo_person_s/s_120/weights/best.pt --conf-thres 0.3
# 或
python detect.py --source ./c3.mp4 --weights ./yolo_person_s/s_120/weights/best.pt --conf-thres 0.3

检测前后结果:

2.6.2 评估
# s 模型

# python val.py --data  ./data/coco_person.yaml  --weights ./yolo_person_s/s_120/weights/best.pt --batch-size 12
# 15.8 GFLOPs
                   Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 
                     all       1000      28027      0.451      0.372      0.375      0.209
             pedestrians       1000      17600      0.738      0.854      0.879      0.608
                  riders       1000        185      0.546      0.492      0.522      0.256
 artially-visible-person       1000       9198      0.461      0.334      0.336      0.125
          ignore-regions       1000        391       0.36      0.132      0.116     0.0463
                   crowd       1000        653      0.152     0.0468     0.0244    0.00841

三、yolov5模型导出ONNX

3.1 工作机制

在本项目中,我们将使用tensorrt decode plugin来代替原来yolov5代码中的decode操作,如果不替换,这部分运算将影响整体性能。

为了让tensorrt能够识别并加载我们额外添加的plugin operator,我们需要修改Yolov5代码中导出onnx模型的部分。

onnx是一种开放的模型格式,可以用来表示深度学习模型,它是由微软开发的,目前已经成为了深度学习模型的标准格式。可以简单理解为各种框架模型转换的一种桥梁。

流程如图所示:

3.2 修改yolov5 代码,输出ONNX

修改之前,建议先使用python export.py --weights weights/yolov5s.pt --include onnx --simplify --dynamic导出一份原始操作的onnx模型,以便和修改后的模型进行对比。

使用课程附件提供的git patch批量修改代码,代码位置:1.代码/export.patch

# 将patch复制到yolov5文件夹
cp export.patch yolov5/
# 进入yolov5文件夹
cd yolov5/
# 应用patch
git am export.patch

在理解代码逻辑后,也可以根据自己的需要在最新版本上的yolov5上进行修改。

首先根据上文自行根据yolov5的要求安装相关依赖,然后再执行下面命令安装导出onnx需要的依赖:

pip install seaborn
pip install onnx-graphsurgeon
pip install onnx-simplifier==0.3.10

apt update
apt install -y libgl1-mesa-glx

安装完成后,准备好训练好的模型文件,这里默认为yolov5s.pt,然后执行:

python export.py --weights weights/yolov5s.pt --include onnx --simplify --dynamic

以生成对应的onnx文件。

3.3 具体修改细节

models/yolo.py文件中54行,我们需要修改class Detect的forward方法,以删除其box decode运算,以直接输出网络结果。在后面的tensorrt部署中,我们将利用decode plugin来进行decode操作,并用gpu加速。修改内容如下:

-            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
-            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
-
-            if not self.training:  # inference
-                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
-                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
-
-                y = x[i].sigmoid()
-                if self.inplace:
-                    y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xy
-                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
-                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
-                    xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0
-                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
-                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
-                    y = torch.cat((xy, wh, conf), 4)
-                z.append(y.view(bs, -1, self.no))
-
-        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
+            y = x[i].sigmoid()
+            z.append(y)
+        return z

可以看到这里删除了主要的运算部分,将模型输出直接作为list返回。修改后,onnx的输出将被修改为三个原始网络输出,我们需要在输出后添加decode plugin的算子。首先我们先导出onnx,再利用nvidia的graph surgeon来修改onnx。首先我们修改onnx export部分代码:

GraphSurgeon 是nvidia提供的工具,可以方便的用于修改、添加或者删除onnx网络图中的节点,并生成新的onnx。参考链接:https://github.com/NVIDIA/TensorRT/tree/master/tools/onnx-graphsurgeon。

    torch.onnx.export(
        model,
        im,
        f,
        verbose=False,
        opset_version=opset,
        training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
        do_constant_folding=not train,
        input_names=['images'],
        output_names=['p3', 'p4', 'p5'],
        dynamic_axes={
            'images': {
                0: 'batch',
                2: 'height',
                3: 'width'},  # shape(1,3,640,640)
            'p3': {
                0: 'batch',
                2: 'height',
                3: 'width'},  # shape(1,25200,4)
            'p4': {
                0: 'batch',
                2: 'height',
                3: 'width'},
            'p5': {
                0: 'batch',
                2: 'height',
                3: 'width'}
        } if dynamic else None)

将onnx的输出改为3个原始网络输出。输出完成后,我们再加载onnx,并simplify:

model_onnx = onnx.load(f)
model_onnx = onnx.load(f)  # load onnx model
onnx.checker.check_model(model_onnx)  # check onnx model

# Simplify
if simplify:
    # try:
    check_requirements(('onnx-simplifier',))
    import onnxsim

    LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
    model_onnx, check = onnxsim.simplify(model_onnx,
        dynamic_input_shape=dynamic,
        input_shapes={'images': list(im.shape)} if dynamic else None)
    assert check, 'assert check failed'
    onnx.save(model_onnx, f)

然后我们再将onnx加载回来,用nvidia surgeon进行修改:

import onnx_graphsurgeon as onnx_gs
import numpy as np
yolo_graph = onnx_gs.import_onnx(model_onnx)

首先我们获取原始的onnx输出p3,p4,p5:

p3 = yolo_graph.outputs[0]
p4 = yolo_graph.outputs[1]
p5 = yolo_graph.outputs[2]

然后我们定义新的onnx输出,由于decode plugin中,有4个输出,所以我们将定义4个新的输出。其名字需要和下面的代码保持一致,这是decode_plugin中预先定义好的。

decode_out_0 = onnx_gs.Variable(
  "DecodeNumDetection",
  dtype=np.int32
)
decode_out_1 = onnx_gs.Variable(
  "DecodeDetectionBoxes",
  dtype=np.float32
)
decode_out_2 = onnx_gs.Variable(
  "DecodeDetectionScores",
  dtype=np.float32
)
decode_out_3 = onnx_gs.Variable(
  "DecodeDetectionClasses",
  dtype=np.int32
)

然后我们需要再添加一些decode参数,定义如下:

decode_attrs = dict()

decode_attrs["max_stride"] = int(max(model.stride))
decode_attrs["num_classes"] = model.model[-1].nc
decode_attrs["anchors"] = [float(v) for v in [10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326]]
decode_attrs["prenms_score_threshold"] = 0.25

在定义好了相关参数后,我们创建一个onnx node,用作decode plugin。由于我们的tensorrt plugin的名称为YoloLayer_TRT,因此这里我们需要保持op的名字与我们的plugin名称一致。通过如下代码,我们创建了一个node:

    decode_plugin = onnx_gs.Node(
        op="YoloLayer_TRT",
        name="YoloLayer",
        inputs=[p3, p4, p5],
        outputs=[decode_out_0, decode_out_1, decode_out_2, decode_out_3],
        attrs=decode_attrs
    )

然后我们将这个node添加了网络中:

    yolo_graph.nodes.append(decode_plugin)
    yolo_graph.outputs = decode_plugin.outputs
    yolo_graph.cleanup().toposort()
    model_onnx = onnx_gs.export_onnx(yolo_graph)

最后添加一些meta信息后,我们导出最终的onnx文件,这个文件可以用于后续的tensorrt部署和推理。

    d = {'stride': int(max(model.stride)), 'names': model.names}
    for k, v in d.items():
        meta = model_onnx.metadata_props.add()
        meta.key, meta.value = k, str(v)

    onnx.save(model_onnx, f)
    LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    return f

四、TensorRT部署

使用TensorRT docker容器:

docker run --gpus all -it --name env_trt -v $(pwd):/app nvcr.io/nvidia/tensorrt:22.08-py3

4.1 模型构建

代码位置:1.代码/tensorrt_cpp/build.cu

和我们之前课程中的TensorRT构建流程一样,yolov5转到onnx后,也是通过相同的流程进行模型构建,并保存序列化后的模型为文件。

  1. 创建builder。这里我们使用了std::unique_ptr只能指针包装我们的builder,实现自动管理指针生命周期。
// =========== 1. 创建builder ===========
auto builder = std::unique_ptr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(sample::gLogger.getTRTLogger()));
if (!builder)
{
  std::cerr << "Failed to create builder" << std::endl;
  return -1;
}
  1. **创建网络。**这里指定了explicitBatch
// ========== 2. 创建network:builder--->network ==========
// 显性batch
const auto explicitBatch = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
// 调用builder的createNetworkV2方法创建network
auto network = std::unique_ptr<nvinfer1::INetworkDefinition>(builder->createNetworkV2(explicitBatch));
if (!network)
{
  std::cout << "Failed to create network" << std::endl;
  return -1;
}
  1. **创建config。**用于模型构建的参数配置
// ========== 3. 创建config配置:builder--->config ==========
auto config = std::unique_ptr<nvinfer1::IBuilderConfig>(builder->createBuilderConfig());
if (!config)
{
  std::cout << "Failed to create config" << std::endl;
  return -1;
}
  1. **创建onnx 解析器,**并进行解析
// 创建onnxparser,用于解析onnx文件
auto parser = std::unique_ptr<nvonnxparser::IParser>(nvonnxparser::createParser(*network, sample::gLogger.getTRTLogger()));
// 调用onnxparser的parseFromFile方法解析onnx文件
auto parsed = parser->parseFromFile(onnx_file_path, static_cast<int>(sample::gLogger.getReportableSeverity()));
if (!parsed)
{
  std::cout << "Failed to parse onnx file" << std::endl;
  return -1;
}
  1. **配置网络构建参数。**这里由于我们导出onnx时并没有指定输入图像的batch,height,width。因此在构建时,我们需要告诉tensorrt我们最终运行时,输入图像的范围,batch size的范围。这样tensorrt才能对应为我们进行模型构建与优化。这里我们将输入指定到了1,3,640,640,这样tensorrt就会为这个尺寸的输入搜索最优算子并构建网络。其中设置pofile参数,即是我们用来指定输入大小搜索范围的。
auto input = network->getInput(0);
auto profile = builder->createOptimizationProfile();
profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kMIN, nvinfer1::Dims4{1, 3, 640, 640});
profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kOPT, nvinfer1::Dims4{1, 3, 640, 640});
profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kMAX, nvinfer1::Dims4{1, 3, 640, 640});
// 使用addOptimizationProfile方法添加profile,用于设置输入的动态尺寸
config->addOptimizationProfile(profile);

// 设置精度,不设置是FP32,设置为FP16,设置为INT8需要额外设置calibrator
config->setFlag(nvinfer1::BuilderFlag::kFP16);

builder->setMaxBatchSize(1);

// 设置最大工作空间(最新版本的TensorRT已经废弃了setWorkspaceSize)
config->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, 1 << 30);

// 7. 创建流,用于设置profile
auto profileStream = samplesCommon::makeCudaStream();
if (!profileStream) { return -1; }
config->setProfileStream(*profileStream);
  1. 将模型序列化,并进行保存
// ========== 4. 创建engine:builder--->engine(*nework, *config) ==========
// 使用buildSerializedNetwork方法创建engine,可直接返回序列化的engine(原来的buildEngineWithConfig方法已经废弃,需要先创建engine,再序列化)
auto plan = std::unique_ptr<nvinfer1::IHostMemory>(builder->buildSerializedNetwork(*network, *config));
if (!plan)
{
  std::cout << "Failed to create engine" << std::endl;
  return -1;
}
// ========== 5. 序列化保存engine ==========
std::ofstream engine_file("./model/yolov5.engine", std::ios::binary);
assert(engine_file.is_open() && "Failed to open engine file");
engine_file.write((char *)plan->data(), plan->size());
engine_file.close();

4.2 模型的推理

代码位置:1.代码/tensorrt_cpp/build.cu

如同之前的TensorRT课程介绍一样,推理过程将读取模型文件,并对输入进行预处理,然后读取模型输出后,再进行后处理。

  1. 创建运行时
// ========= 1. 创建推理运行时runtime =========
auto runtime = std::unique_ptr<nvinfer1::IRuntime>(nvinfer1::createInferRuntime(sample::gLogger.getTRTLogger()));
if (!runtime)
{
  std::cout << "runtime create failed" << std::endl;
  return -1;
}
  1. 反序列化模型得到推理Engine
// ======== 2. 反序列化生成engine =========
// 加载模型文件
auto plan = load_engine_file(engine_file);
// 反序列化生成engine
auto mEngine = std::shared_ptr<nvinfer1::ICudaEngine>(runtime->deserializeCudaEngine(plan.data(), plan.size()));
  1. 创建执行上下文
// ======== 3. 创建执行上下文context =========
auto context = std::unique_ptr<nvinfer1::IExecutionContext>(mEngine->createExecutionContext());
  1. 创建输入输出缓冲区管理器,这里我们使用的是tensorrt sample code中的buffer管理器,以方便我们进行内存的分配和cpu gpu之间的内存拷贝。
samplesCommon::BufferManager buffers(mEngine);
  1. 我们读取视频文件,并逐帧读取图像,送入模型中,进行推理
auto cap = cv::VideoCapture(input_video_path);

while(cap.isOpened()) {
  cv::Mat frame;
  cap >> frame;
  if (frame.empty()) break;
  ...
  1. 首先对输入图像进行预处理,这里我们使用preprocess.cu中的代码,其中实现了对输入图像处理的gpu 加速(后续再进行讲解)。
// 输入预处理
process_input(frame, (float *)buffers.getDeviceBuffer(kInputTensorName));
  1. 预处理完成后,我们调用推理api executeV2,进行模型推理,并将模型输出拷贝到cpu
context->executeV2(buffers.getDeviceBindings().data());
buffers.copyOutputToHost();
  1. 最后我们从buffer manager中获取模型输出,并执行nms,得到最后的检测框
// 获取模型输出
int32_t *num_det = (int32_t *)buffers.getHostBuffer(kOutNumDet); // 检测到的目标个数
int32_t *cls = (int32_t *)buffers.getHostBuffer(kOutDetCls);     // 检测到的目标类别
float *conf = (float *)buffers.getHostBuffer(kOutDetScores);     // 检测到的目标置信度
float *bbox = (float *)buffers.getHostBuffer(kOutDetBBoxes);     // 检测到的目标框
// 后处理
std::vector<Detection> bboxs;
yolo_nms(bboxs, num_det, cls, conf, bbox, kConfThresh, kNmsThresh);

  1. 我们依次将检测框画到图像上,再打印对应的fps和推理时间。并显示图像
// 结束时间
auto end = std::chrono::high_resolution_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
auto time_str = std::to_string(elapsed) + "ms";
auto fps_str = std::to_string(1000 / elapsed) + "fps";

// 遍历检测结果
for (size_t j = 0; j < bboxs.size(); j++)
{
  cv::Rect r = get_rect(frame, bboxs[j].bbox);
  cv::rectangle(frame, r, cv::Scalar(0x27, 0xC1, 0x36), 2);
  cv::putText(frame, std::to_string((int)bboxs[j].class_id), cv::Point(r.x, r.y - 10), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0x27, 0xC1, 0x36), 2);
}
cv::putText(frame, time_str, cv::Point(50, 50), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2);
cv::putText(frame, fps_str, cv::Point(50, 100), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2);

cv::imshow("frame", frame);

4.3 TensorRT plugin

//TODO

4.4 INT8、FP16量化对比

// TODO

4.6人员闯入的应用开发

// TODO

4.7 利用DeepStream进行深度优化,并对比

// TODO

4.8 YoloV5 DeepStream部署

// TODO


http://www.niftyadmin.cn/n/5199698.html

相关文章

为什么几乎所有的量化交易都用Python?

因为python好用啊&#xff01;Python&#xff0c;作为一种功能强大且易于学习的编程语言&#xff0c;已经成为金融分析师的首选工具。 以下我将从3个方面给大家分析python为何成为量化交易的理想选择。 一、语言特性与金融分析的匹配性 1、简单易懂的语言 Python就像我们的日…

Android AIDL中使用Surface问题

1.构建ITest.aidl文件 package com.xxx.xxxx;import android.view.Surface;interface IMonitorService {boolean addSurface(in Surface surface);boolean removeSurface(in Surface surface); } 2.构建时报错 3.Surface源码分析 android.view.Surface中包含两个Surface类&am…

存储区域网络(SAN)之FC-SAN和IP-SAN的比较

存储区域网络(Storage Area Network&#xff0c;SAN)用于将多个系统连接到存储设备和子系统。 早期FC-SAN&#xff1a; 采用光纤通道(Fibre Channel&#xff0c;FC)技术&#xff0c;通过光纤通道交换机连接存储阵列和服务器主机&#xff0c;建立专用于数据存储的区域网络。 传…

shell脚本用法参数

-e  若指令传回值不等于0&#xff0c;则立即退出shell #!/bin/bash set -e .... ....A${yhl:-123}和:${yhl123}在功能上是类似的&#xff0c;都用于设置变量的默认值 :${yhl123}返回的结果总是真

生产环境_移动目标轨迹压缩应用和算法处理-Douglas-Peucker轨迹压缩算法

场景&#xff1a; 我目前设计到的场景是&#xff1a;即在地图应用中&#xff0c;对GPS轨迹数据进行压缩&#xff0c;减少数据传输和存储开销&#xff0c;因为轨迹点太频繁了&#xff0c;占用空间太大&#xff0c;运行节点太慢了&#xff0c;经过小组讨论需要上这个算法&#x…

企企通亮相广东智能装备产业发展大会:以数字化采购促进智能装备产业集群高质量发展

制造业是立国之本&#xff0c;是国民经济的主要支柱、是推动工业技术创新的重要来源。 广东作为我国制造业大省&#xff0c;装备制造业规模增长快速&#xff0c;技术水平居于全国前列。为全面贯彻学习党的二十大精神&#xff0c;进一步推动机械装备可靠性设计&#xff0c;促进新…

给ORACLE创建一个用新用户并且给部分视图或表查询权限

这里写自定义目录标题 视图或表属于哪个用户查询登录所属账户 打开 cmd输入 sqlplus/nologconn 账号/密码 as sysdba创建用户赋予用户视图权限赋予用户视图权限连接数据库权限 视图或表属于哪个用户查询 表&#xff1a; SELECT * FROM ALL_OBJECTS WHERE OBJECT_TYPETABLE a…

在 Windows 中关闭 Nginx 所有进程

在 Windows 中关闭 Nginx 所有进程并强制重启的命令如下&#xff1a; 打开命令提示符&#xff08;CMD&#xff09;。 输入以下命令来查找 Nginx 进程的 PID&#xff1a; tasklist /fi "imagename eq nginx.exe"此命令将列出所有名为 nginx.exe 的进程以及它们的 PID…