LibTorch实战三:C++版本YOLOV5.4的部署

news/2024/7/10 22:57:46 标签: YOLO, 1024程序员节, c++, linux, ubuntu

目录

一、环境配置

二、.torchscript.pt版本模型导出

三、C++版本yolov5.4实现

四、问题记录

4.1、注释 detector.h中,注释如下头文件

4.2、错误: “std”: 不明确的符号

4.3、建议常被debug版本libtorch

4.4、问题:编译成功后,运行代码,发现torch::cuda::is_available()返回false

4.5、导出模型,命令行有警告

五、reference


一、环境配置

  • win10
  • vs2017
  • libtorch-win-shared-with-deps-debug-1.8.1+cpu
  • opencv349

  由于yolov5代码,作者还在更新(写这篇博客的时候,最新是5.4,没错这是几年前写的),模型结构可能会有改变,所以咱们使用的libtorch必须满足其要求,最好是一致。我这里提供本博客采用的yolov5版本python源码。

        在源码中的requirments.txt中要求依赖库版本如下;在c++环境中,咱们这里用的libtorch1.8.1(今天我也测试了环境:libtorch-win-shared-with-deps-1.7.1+cu110,也能够正常检测,和本博客最终结果一致);同时用opencv&c++作图像处理,不需要c++版本torchvision:

# pip install -r requirements.txt

# base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3.1
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1# 以下内容神略

        为了便于调试,我这里下载的是debug版本libtorch,而且是cpu版本,代码调好后,转GPU也很简单吧。opencv版本其实随意,opencv3++就行。

二、.torchscript.pt版本模型导出

  打开yolov5.4源码目录下models文件夹,编辑export.py脚本,如下,将58行注释,新增59行(GPU版本还需要修改一些内容,GPU版本后续更新,这篇博客只管CPU版本

"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats

Usage:
    $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
"""

import argparse
import sys
import time

sys.path.append('./')  # to run '$ python *.py' files in subdirectories

import torch
import torch.nn as nn

import models
from models.experimental import attempt_load
from utils.activations import Hardswish, SiLU
from utils.general import set_logging, check_img_size
from utils.torch_utils import select_device

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')  # from yolov5/models/
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')  # height, width
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
    parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
    parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    opt = parser.parse_args()
    opt.img_size *= 2 if len(opt.img_size) == 1 else 1  # expand
    print(opt)
    set_logging()
    t = time.time()

    # Load PyTorch model
    device = select_device(opt.device)
    model = attempt_load(opt.weights, map_location=device)  # load FP32 model
    labels = model.names

    # Checks
    gs = int(max(model.stride))  # grid size (max stride)
    opt.img_size = [check_img_size(x, gs) for x in opt.img_size]  # verify img_size are gs-multiples

    # Input
    img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device)  # image size(1,3,320,192) iDetection

    # Update model
    for k, m in model.named_modules():
        m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility
        if isinstance(m, models.common.Conv):  # assign export-friendly activations
            if isinstance(m.act, nn.Hardswish):
                m.act = Hardswish()
            elif isinstance(m.act, nn.SiLU):
                m.act = SiLU()
        # elif isinstance(m, models.yolo.Detect):
        #     m.forward = m.forward_export  # assign forward (optional)
    #model.model[-1].export = not opt.grid  # set Detect() layer grid export
    model.model[-1].export = False
    y = model(img)  # dry run

    # TorchScript export
    try:
        print('\nStarting TorchScript export with torch %s...' % torch.__version__)
        f = opt.weights.replace('.pt', '.torchscript.pt')  # filename
        ts = torch.jit.trace(model, img)
        ts.save(f)
        print('TorchScript export success, saved as %s' % f)
    except Exception as e:
        print('TorchScript export failure: %s' % e)
# 以下代码省略,无需求改
......

接着在conda环境激活yolov5.4的虚拟环境,执行下面脚本:

python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
错误解决:1、bash窗口可能提示 not module utils;这是因为没有将源码根目录添加进环境变量,linux下执行以下命令就行
export PYTHONPATH="$PWD"

        win下,我建议直接用pycharm打开yolov5.4工程,在ide中去执行export.py就行,如果你没有下载好yolovs.pt,他会自动下载,下载链接会打印在控制台,如下,如果下不动,可以尝试复制链接到迅雷。

Downloading https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5s.pt to yolov5s.pt...

执行export.py后出现如下警告:

D:\yolov5-0327\models\yolo.py:50: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if self.grid[i].shape[2:4] != x[i].shape[2:4]:
D:\Program Files\Anaconda\envs\yolov5\lib\site-packages\torch\jit\_trace.py:934: TracerWarning: Encountering a list at the output of the tracer might cause the trace to be incorrect, this is only valid if the container structure does not change based on the module's inputs. Consider using a constant container instead (e.g. for `list`, use a `tuple` instead. for `dict`, use a `NamedTuple` instead). If you absolutely need this and know the side effects, pass strict=False to trace() to allow this behavior.
  module._c._create_method_from_trace(
TorchScript export success, saved as ./yolov5s.torchscript.pt
ONNX export failure: No module named 'onnx'
CoreML export failure: No module named 'coremltools'

Export complete (10.94s). Visualize with https://github.com/lutzroeder/netron.

警告内容以后分析,不影响部署

三、C++版本yolov5.4实现

libtorch在vs环境中配置(在项目属性中设置下面加粗项目):

include:

D:\libtorch-win-shared-with-deps-debug-1.8.1+cpu\libtorch\include

D:\libtorch-win-shared-with-deps-debug-1.8.1+cpu\libtorch\include\torch\csrc\api\include

lib:

D:\libtorch-win-shared-with-deps-debug-1.8.1+cpu\libtorch\lib

依赖库(你可能用的更新的libtorch,所以具体lib目录下所有.lib文件都要自己贴到连接器-附加依赖中):

asmjit.lib
c10.lib
c10d.lib
c10_cuda.lib
caffe2_detectron_ops_gpu.lib
caffe2_module_test_dynamic.lib
caffe2_nvrtc.lib
clog.lib
cpuinfo.lib
dnnl.lib
fbgemm.lib
fbjni.lib
gloo.lib
gloo_cuda.lib
libprotobuf-lite.lib
libprotobuf.lib
libprotoc.lib
mkldnn.lib
pthreadpool.lib
pytorch_jni.lib
torch.lib
torch_cpu.lib
torch_cuda.lib
XNNPACK.lib

环境变量(需要重启):

D:\libtorch-win-shared-with-deps-debug-1.8.1+cpu\libtorch\lib

配置好之后,vs2017 设置为debug X64模式,下面是yolov5.4版本c++代码

输入是:

  • 上述转好的.torchscript.pt格式的模型文件
  • coco.names
  • 一张图

完整libtorch c++源码:

#include <torch/script.h>
#include <torch/torch.h>
#include<opencv2/opencv.hpp>
#include <iostream>


std::vector<std::string> LoadNames(const std::string& path)
{
    // load class names
    std::vector<std::string> class_names;
    std::ifstream infile(path);
    if (infile.is_open()) {
        std::string line;
        while (std::getline(infile, line)) {
            class_names.emplace_back(line);
        }
        infile.close();
    }
    else {
        std::cerr << "Error loading the class names!\n";
    }

    return class_names;
}

std::vector<float> LetterboxImage(const cv::Mat& src, cv::Mat& dst, const cv::Size& out_size)
{
    auto in_h = static_cast<float>(src.rows);
    auto in_w = static_cast<float>(src.cols);
    float out_h = out_size.height;
    float out_w = out_size.width;

    float scale = std::min(out_w / in_w, out_h / in_h);

    int mid_h = static_cast<int>(in_h * scale);
    int mid_w = static_cast<int>(in_w * scale);

    cv::resize(src, dst, cv::Size(mid_w, mid_h));

    int top = (static_cast<int>(out_h) - mid_h) / 2;
    int down = (static_cast<int>(out_h) - mid_h + 1) / 2;
    int left = (static_cast<int>(out_w) - mid_w) / 2;
    int right = (static_cast<int>(out_w) - mid_w + 1) / 2;

    cv::copyMakeBorder(dst, dst, top, down, left, right, cv::BORDER_CONSTANT, cv::Scalar(114, 114, 114));

    std::vector<float> pad_info{ static_cast<float>(left), static_cast<float>(top), scale };
    return pad_info;
}

enum Det
{
    tl_x = 0,
    tl_y = 1,
    br_x = 2,
    br_y = 3,
    score = 4,
    class_idx = 5
};

struct Detection
{
    cv::Rect bbox;
    float score;
    int class_idx;
};

void Tensor2Detection(const at::TensorAccessor<float, 2>& offset_boxes,
    const at::TensorAccessor<float, 2>& det,
    std::vector<cv::Rect>& offset_box_vec,
    std::vector<float>& score_vec)
{

    for (int i = 0; i < offset_boxes.size(0); i++) {
        offset_box_vec.emplace_back(
            cv::Rect(cv::Point(offset_boxes[i][Det::tl_x], offset_boxes[i][Det::tl_y]),
                cv::Point(offset_boxes[i][Det::br_x], offset_boxes[i][Det::br_y]))
        );
        score_vec.emplace_back(det[i][Det::score]);
    }
}

void ScaleCoordinates(std::vector<Detection>& data, float pad_w, float pad_h,
    float scale, const cv::Size& img_shape)
{
    auto clip = [](float n, float lower, float upper)
    {
        return std::max(lower, std::min(n, upper));
    };

    std::vector<Detection> detections;
    for (auto & i : data) {
        float x1 = (i.bbox.tl().x - pad_w) / scale;  // x padding
        float y1 = (i.bbox.tl().y - pad_h) / scale;  // y padding
        float x2 = (i.bbox.br().x - pad_w) / scale;  // x padding
        float y2 = (i.bbox.br().y - pad_h) / scale;  // y padding

        x1 = clip(x1, 0, img_shape.width);
        y1 = clip(y1, 0, img_shape.height);
        x2 = clip(x2, 0, img_shape.width);
        y2 = clip(y2, 0, img_shape.height);

        i.bbox = cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2));
    }
}


torch::Tensor xywh2xyxy(const torch::Tensor& x)
{
    auto y = torch::zeros_like(x);
    // convert bounding box format from (center x, center y, width, height) to (x1, y1, x2, y2)
    y.select(1, Det::tl_x) = x.select(1, 0) - x.select(1, 2).div(2);
    y.select(1, Det::tl_y) = x.select(1, 1) - x.select(1, 3).div(2);
    y.select(1, Det::br_x) = x.select(1, 0) + x.select(1, 2).div(2);
    y.select(1, Det::br_y) = x.select(1, 1) + x.select(1, 3).div(2);
    return y;
}

std::vector<std::vector<Detection>> PostProcessing(const torch::Tensor& detections,
    float pad_w, float pad_h, float scale, const cv::Size& img_shape,
    float conf_thres, float iou_thres)
{
    /***
     * 结果纬度为batch index(0), top-left x/y (1,2), bottom-right x/y (3,4), score(5), class id(6)
     * 13*13*3*(1+4)*80
     */
    constexpr int item_attr_size = 5;
    int batch_size = detections.size(0);
    // number of classes, e.g. 80 for coco dataset
    auto num_classes = detections.size(2) - item_attr_size;

    // get candidates which object confidence > threshold
    auto conf_mask = detections.select(2, 4).ge(conf_thres).unsqueeze(2);

    std::vector<std::vector<Detection>> output;
    output.reserve(batch_size);

    // iterating all images in the batch
    for (int batch_i = 0; batch_i < batch_size; batch_i++) {
        // apply constrains to get filtered detections for current image
        auto det = torch::masked_select(detections[batch_i], conf_mask[batch_i]).view({ -1, num_classes + item_attr_size });

        // if none detections remain then skip and start to process next image
        if (0 == det.size(0)) {
            continue;
        }

        // compute overall score = obj_conf * cls_conf, similar to x[:, 5:] *= x[:, 4:5]
        det.slice(1, item_attr_size, item_attr_size + num_classes) *= det.select(1, 4).unsqueeze(1);

        // box (center x, center y, width, height) to (x1, y1, x2, y2)
        torch::Tensor box = xywh2xyxy(det.slice(1, 0, 4));

        // [best class only] get the max classes score at each result (e.g. elements 5-84)
        std::tuple<torch::Tensor, torch::Tensor> max_classes = torch::max(det.slice(1, item_attr_size, item_attr_size + num_classes), 1);

        // class score
        auto max_conf_score = std::get<0>(max_classes);
        // index
        auto max_conf_index = std::get<1>(max_classes);

        max_conf_score = max_conf_score.to(torch::kFloat).unsqueeze(1);
        max_conf_index = max_conf_index.to(torch::kFloat).unsqueeze(1);

        // shape: n * 6, top-left x/y (0,1), bottom-right x/y (2,3), score(4), class index(5)
        det = torch::cat({ box.slice(1, 0, 4), max_conf_score, max_conf_index }, 1);

        // for batched NMS
        constexpr int max_wh = 4096;
        auto c = det.slice(1, item_attr_size, item_attr_size + 1) * max_wh;
        auto offset_box = det.slice(1, 0, 4) + c;

        std::vector<cv::Rect> offset_box_vec;
        std::vector<float> score_vec;

        // copy data back to cpu
        auto offset_boxes_cpu = offset_box.cpu();
        auto det_cpu = det.cpu();
        const auto& det_cpu_array = det_cpu.accessor<float, 2>();

        // use accessor to access tensor elements efficiently
        Tensor2Detection(offset_boxes_cpu.accessor<float, 2>(), det_cpu_array, offset_box_vec, score_vec);

        // run NMS
        std::vector<int> nms_indices;
        cv::dnn::NMSBoxes(offset_box_vec, score_vec, conf_thres, iou_thres, nms_indices);

        std::vector<Detection> det_vec;
        for (int index : nms_indices) {
            Detection t;
            const auto& b = det_cpu_array[index];
            t.bbox =
                cv::Rect(cv::Point(b[Det::tl_x], b[Det::tl_y]),
                    cv::Point(b[Det::br_x], b[Det::br_y]));
            t.score = det_cpu_array[index][Det::score];
            t.class_idx = det_cpu_array[index][Det::class_idx];
            det_vec.emplace_back(t);
        }

        ScaleCoordinates(det_vec, pad_w, pad_h, scale, img_shape);

        // save final detection for the current image
        output.emplace_back(det_vec);
    } // end of batch iterating

    return output;
}

void Demo(cv::Mat& img,
    const std::vector<std::vector<Detection>>& detections,
    const std::vector<std::string>& class_names,
    bool label = true)
{
    if (!detections.empty()) {
        for (const auto& detection : detections[0]) {
            const auto& box = detection.bbox;
            float score = detection.score;
            int class_idx = detection.class_idx;

            cv::rectangle(img, box, cv::Scalar(0, 0, 255), 2);

            if (label) {
                std::stringstream ss;
                ss << std::fixed << std::setprecision(2) << score;
                std::string s = class_names[class_idx] + " " + ss.str();

                auto font_face = cv::FONT_HERSHEY_DUPLEX;
                auto font_scale = 1.0;
                int thickness = 1;
                int baseline = 0;
                auto s_size = cv::getTextSize(s, font_face, font_scale, thickness, &baseline);
                cv::rectangle(img,
                    cv::Point(box.tl().x, box.tl().y - s_size.height - 5),
                    cv::Point(box.tl().x + s_size.width, box.tl().y),
                    cv::Scalar(0, 0, 255), -1);
                cv::putText(img, s, cv::Point(box.tl().x, box.tl().y - 5),
                    font_face, font_scale, cv::Scalar(255, 255, 255), thickness);
            }
        }
    }

    cv::namedWindow("Result", cv::WINDOW_NORMAL);
    cv::imshow("Result", img);

}

int main()
{
    // yolov5Ns.torchscript.pt 报错,所以仅能读取yolov5.4模型
    torch::jit::script::Module module = torch::jit::load("yolov5sxxx.torchscript.pt");
    torch::DeviceType device_type = torch::kCPU;
    module.to(device_type);
    /*module.to(torch::kHalf);*/
    module.eval();

    // img 必须读取3-channels图片
    cv::Mat img = cv::imread("zidane.jpg", -1);
    // 读取类别
    std::vector<std::string> class_names = LoadNames("coco.names");
    if (class_names.empty()) {
        return -1;
    }

    // set up threshold
    float conf_thres = 0.4;
    float iou_thres = 0.5;

    //inference
    torch::NoGradGuard no_grad;
    cv::Mat img_input = img.clone();
    std::vector<float> pad_info = LetterboxImage(img_input, img_input, cv::Size(640, 640));
    const float pad_w = pad_info[0];
    const float pad_h = pad_info[1];
    const float scale = pad_info[2];
    cv::cvtColor(img_input, img_input, cv::COLOR_BGR2RGB);  // BGR -> RGB
    //归一化需要是浮点类型
    img_input.convertTo(img_input, CV_32FC3, 1.0f / 255.0f);  // normalization 1/255
    // 加载图像到设备
    auto tensor_img = torch::from_blob(img_input.data, { 1, img_input.rows, img_input.cols, img_input.channels() }).to(device_type);
    // BHWC -> BCHW
    tensor_img = tensor_img.permute({ 0, 3, 1, 2 }).contiguous();  // BHWC -> BCHW (Batch, Channel, Height, Width)

    std::vector<torch::jit::IValue> inputs;
    // 在容器尾部添加一个元素,这个元素原地构造,不需要触发拷贝构造和转移构造
    inputs.emplace_back(tensor_img);

    torch::jit::IValue output = module.forward(inputs);

    // 解析结果
    auto detections = output.toTuple()->elements()[0].toTensor();
    auto result = PostProcessing(detections, pad_w, pad_h, scale, img.size(), conf_thres, iou_thres);
    // visualize detections
    if (true) {
        Demo(img, result, class_names);
        cv::waitKey(0);
    }
    return 1;
}

四、问题记录

我参考的是链接[1][2]代码,非常坑,[1][2]代码是一样的,也不知道谁抄谁的,代码中没有说明yolov5具体版本,而且有很多问题,不过还是感谢给了参考。

4.1、注释 detector.h中,注释如下头文件

//#include <c10/cuda/CUDAStream.h>
#//include <ATen/cuda/CUDAEvent.h>

4.2、错误: “std”: 不明确的符号

解决办法1:项目->属性->c/c++->语言->符合模式->选择否

(看清楚vs项目属性窗口对应的到底是Debug还是Release,血的教训!)

解决办法2:还有有个老哥给出的方法是,在std报错的地方改为:"::std",不推荐!

4.3、建议常被debug版本libtorch

libtorch中,执行到加载模型那一行代码,跳进libtorch库中的Assert,提示错误:AT_ASSERT(isTuple(), "Expected Tuple but got ", tagKind());(咱们是libtorch debug版本,还能跳到这一行,要是release,你都不知道错在哪里,所以常备debug版本,很有必要)

可能是你转模型的yolov5版本不是5.4,而是5.3、5.3.1、5.3、5.1;还有可能是你export.py脚本中没有按照上面设置。

参考:https://blog.csdn.net/weixin_42398658/article/details/111954760

4.4、问题:编译成功后,运行代码,发现torch::cuda::is_available()返回false

解决:

  • a、配置环境的时候,请将库lib文件夹下所有“.lib”文件名粘贴到项目属性(Release)-链接器 - 输入 - 附加依赖项
  • b项目属性(Release)-链接器 - 命令行 - 其他选项贴入下面命令
/INCLUDE:?warp_size@cuda@at@@YAHXZ

完美解决!

4.5、导出模型,命令行有警告

上面导出模型控制台打印的警告信息还没解决,但是部署后,检测效果和python版本有差别(其实几乎差不多),如下:

如下:左边是官方结果,右边是libtorch模型部署结构,置信度不相上下,开心!

可以看到右边那个人领带没有检测出来,这是因为咱们用的是5s模型,在yolov5最新版本中,作者对模型的修改更加注重5x模型的精度,5s性能确实略微下降。

 

五、reference

[1] libtorch代码参考;https://zhuanlan.zhihu.com/p/338167520

[2] libtorch代码参考;https://gitee.com/goodtn/libtorch-yolov5-gpu/tree/master

[3] libtorch相关报错总结(非常nice!):https://blog.csdn.net/qq_18305555/article/details/114013236


http://www.niftyadmin.cn/n/5139551.html

相关文章

node学习之包管理器

一、概念介绍 **1.1 包是什么 ** 『包』英文单词是 package &#xff0c;代表了一组特定功能的源码集合 **1.2 包管理工具 ** 管理『包』的应用软件&#xff0c;可以对「包」进行 下载安装 &#xff0c; 更新 &#xff0c; 删除 &#xff0c; 上传 等操作 借助包管理工具&…

【Qt控件之QFileDialog】详解

描述 QFileDialog类提供了一个对话框&#xff0c;允许用户选择文件或目录。 QFileDialog类使用户能够遍历文件系统以选择一个或多个文件或目录。 创建QFileDialog最简单的方法是使用静态函数。 fileName QFileDialog::getOpenFileName(this,tr("Open Image"), &qu…

文献综述|LM领域水印发展综述

前言&#xff1a;前段时间一直在看LM模型水印相关的论文&#xff0c;下面对该领域的研究现状进行一个简要的总结。 对于不了解模型水印的同学&#xff0c;建议先看一下此篇博客&#xff1a;文献综述&#xff5c;CV领域神经网络水印发展综述 以下是个人总结的一些 Survey of X-…

ROS自学笔记二十二:导航中里程计消息

在ROS中&#xff0c;里程计消息用于传递机器人的位姿和运动信息。通常&#xff0c;里程计消息与机器人的底盘控制和运动规划紧密相关。nav_msgs/Odometry&#xff1a;nav_msgs/Odometry 是用于表示机器人位姿和运动信息的消息类型。这个消息包含了机器人的位置、方向、线速度和…

图数据库Neo4j概念、应用场景、安装及CQL的使用

一、图数据库概念 引用Seth Godin的说法&#xff0c;企业需要摒弃仅仅收集数据点的做法&#xff0c;开始着手建立数据之间的关联关系。数据点之间的关系甚至比单个点本身更为重要。 传统的**关系数据库管理系统(RDBMS)**并不擅长处理数据之间的关系&#xff0c;那些表状数据模…

精明玩家的防骗攻略!绝地求生作图工具推荐!

亲爱的游戏玩家们&#xff0c;大家好&#xff01;在这个充满欢乐的游戏世界中&#xff0c;我们总是不可避免地会面临一些骗局和风险。为了保护自己的权益和游戏账号的安全&#xff0c;我们需要一些实用的方法和工具来帮助我们游戏更放心。 首先&#xff0c;防止被骗游戏账号黑名…

python 之正则表达式详解

文章目录 r与R原始字符串的特点&#xff1a;示例&#xff1a;正则表达式示例&#xff1a;文件路径示例&#xff1a; 有没有r 带来的影响使用 r 前缀的示例&#xff1a;不使用 r 前缀的示例&#xff1a; \b 作为单词的界限匹配以 "cat" 开头的单词&#xff1a;匹配以 …

【Java】基于ArrayList手写HashMap集合

HashMap底层不是基于ArrayList实现的&#xff0c;而是基于HashCode值计算的&#xff0c;基于ArrayList 查询效率非常低&#xff0c;时间复杂度O(n)虽然可以保证存放 键值对 的有序性 但是并不可取 示例代码 package com.collection.Demo10;import java.util.ArrayList;/*** 基…