使用YOLOv5的backbone网络识别图像天气 - P9

news/2024/7/11 0:41:09 标签: YOLO, cnn, 分类, 人工智能, 神经网络, 深度学习

目录

  • 环境
  • 步骤
    • 环境设置
      • 包引用
      • 声明一个全局的设备
    • 数据准备
      • 收集数据集信息
      • 构建数据集
      • 在数据集中读取分类名称
      • 划分训练、测试数据集
      • 数据集划分批次
    • 模型设计
      • 编写维持卷积前后图像大小不变的padding计算函数
      • 编写YOLOv5中使用的卷积模块
      • 编写YOLOv5中使用的Bottleneck模块
      • 编写YOLOv5中使用的C3模块
      • 编写YOLOv5中使用SPPF模块
      • 基于以上模块编写本任务需要的网络结构
    • 模型训练
      • 编写训练函数
      • 开始模型的训练
      • 训练过程图表展示
    • 模型效果展示
      • 载入最佳模型
      • 编写预测函数
      • 执行预测并展示
  • 总结与心得体会


环境

  • 系统: Linux
  • 语言: Python3.8.10
  • 深度学习框架: Pytorch2.0.0+cu118

步骤

环境设置

包引用

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from torchvision import datasets, transforms

import pathlib, random, copy
from PIL import Image

import numpy as np
import matplotlib.pyplot as plt
from torchinfo import summary

声明一个全局的设备

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

数据准备

收集数据集信息

# 图像数据的路径
image_path = 'weather_photos'

# 所有图像的列表
image_list = list(pathlib.Path(image_path).glob('*/*'))

# 随机打印几张图像的信息
for _ in range(5):
	image = random.choice(image_list)
	print(f"{str(image)}, shape is: {np.array(Image.open(str(image))).shape}")

# 查看随机的20张图像
plt.figure(figsize=(20, 4))
for i in range(20):
	plt.subplot(2, 10, i+1)
	plt.axis('off')
	image = random.choice(image_list)
	plt.title(image.parts[-2])
	plt.imshow(Image.open(str(image)))

图像信息打印
随机查看20张图像
通过图像信息的获取可以发现图像的尺寸并不一致,因此需要在构建数据集的时候对图像做一些伸缩处理。

构建数据集

img_transform = transforms.Compose([
	transforms.Resize([224, 224]),
	transforms.ToTensor(),
	transforms.Normalize(
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225]
	)
])
dataset = datasets.ImageFolder(image_path, transform=img_transform)

在数据集中读取分类名称

class_names = [k for k in dataset.class_to_idx]
print(class_names)

划分训练、测试数据集

train_size = int(len(dataset) * 0.8)
test_size = len(dataset) - train_size
train_dataset, test_dataset = random_split(dataset, [train_size, test_size])

数据集划分批次

batch_size = 32
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)

模型设计

编写维持卷积前后图像大小不变的padding计算函数

def pad(kernel_size, padding=None):
	if padding is None:
		return kernel_size // 2 if isinstance(kernel_size, int) else [item //2 for item in kernel_size]
	return padding

YOLOv5_95">编写YOLOv5中使用的卷积模块

class Conv(nn.Module):
	def __init__(self, ch_in, ch_out, kernel_size, stride=1, padding=None, groups=1, activation=True):
		super().__init__()
		
		self.conv = nn.Conv2d(ch_in, ch_out, kernel_size, stride, pad(kernel_size, padding), groups=groups, bias=False)
		self.bn = nn.BatchNorm2d(ch_out)
		self.act = nn.SiLU() if activation is True else (activation if isinstance(activation, nn.Module) else nn.Identity())

	def forward(self, x):
		x = self.act(self.bn(self.conv(x)))
		return x

YOLOv5Bottleneck_110">编写YOLOv5中使用的Bottleneck模块

class Bottleneck(nn.Module):
	def __init__(self, ch_in, ch_out, shortcut=True, groups=1, factor=0.5):
		super().__init__()

		hidden_size = int(ch_out*factor)
		self.conv1 = Conv(ch_in, hidden_size, 1)
		self.conv2 = Conv(hidden_size, ch_out, 3)
		self.add = shortcut and ch_in == ch_out

	def forward(self, x):
		return x + self.conv2(self.conv1(x)) if self.add else self.conv2(self.conv1(x))

YOLOv5C3_125">编写YOLOv5中使用的C3模块

class C3(nn.Module):
	def __init__(self, ch_in, ch_out, n=1, shortcut=True, groups=1, factor=0.5):
		super().__init__()

		hidden_size = int(ch_out*factor)
		self.conv1 = Conv(ch_in, hidden_size, 1)
		self.conv2 = Conv(ch_in, hidden_size, 1)
		self.conv3 = Conv(2*hidden_size, ch_out, 1)
		self.m = nn.Sequential(*(Bottleneck(hidden_size, hidden_size) for _ in range(n)))

	def forward(self, x):
		return self.conv3(torch.cat((self.conv1(x), self.m(self.conv2(x))), dim=1))

YOLOv5SPPF_140">编写YOLOv5中使用SPPF模块

class SPPF(nn.Module):
	def __init__(self, ch_in, ch_out, kernel_size=5):
		super().__init__()

		hidden_size = ch_in // 2
		self.conv1 = Conv(ch_in, hidden_size, 1)
		self.conv2 = Conv(4*hidden_size, ch_out, 1)
		self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size//2)

	def forward(self, x):
		x = self.conv1(x)
		y1 = self.m(x)
		y2 = self.m(y1)
		y3 = self.m(y2)
		return self.conv2(torch.cat([x, y1, y2, y3], dim=1))

基于以上模块编写本任务需要的网络结构

class Network(nn.Module):
	def __init__(self, num_classes):
		super().__init__()

		self.conv1 = Conv(3, 64, 3, 2, 2)
		self.conv2 = Conv(64, 128, 3, 2)
		self.c3_1 = C3(128, 128)
		self.conv3 = Conv(128, 256, 3, 2)
		self.c3_2 = C3(256, 256)
		self.conv4 = Conv(256, 512, 3, 2)
		self.c3_3 = C3(512, 512)
		self.conv5 = Conv(512, 1024, 3, 2)
		self.c3_4 = C3(1024, 1024)
		self.sppf = SPPF(1024, 1024, 5)

		self.classifier = nn.Sequential(
			nn.Linear(65536, 100),
			nn.ReLU(),
			nn.Linear(100, num_classes)
		)
	
	def forward(self, x):
		x = self.conv1(x)
		x = self.conv2(x)
		x = self.c3_1(x)
		x = self.conv3(x)
		x = self.c3_2(x)
		x = self.conv4(x)
		x = self.c3_3(x)
		x = self.conv5(x)
		x = self.c3_4(x)
		x = self.sppf(x)
		x = x.view(x.size(0), -1)
		x = self.classifier(x)
		return x
model = Network(len(class_names)).to(device)
print(model)
summary(model, input_size=(32, 3, 224, 224))

直接打印出的模型结构如下:

Network(
  (conv1): Conv(
    (conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), bias=False)
    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (conv2): Conv(
    (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (c3_1): C3(
    (conv1): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (conv2): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (conv3): Conv(
      (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (conv1): Conv(
          (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (conv2): Conv(
          (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (conv3): Conv(
    (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (c3_2): C3(
    (conv1): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (conv2): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (conv3): Conv(
      (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (conv1): Conv(
          (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (conv2): Conv(
          (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (conv4): Conv(
    (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (c3_3): C3(
    (conv1): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (conv2): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (conv3): Conv(
      (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (conv1): Conv(
          (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (conv2): Conv(
          (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (conv5): Conv(
    (conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (c3_4): C3(
    (conv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (conv2): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (conv3): Conv(
      (conv): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (conv1): Conv(
          (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (conv2): Conv(
          (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (sppf): SPPF(
    (conv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (conv2): Conv(
      (conv): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Linear(in_features=65536, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)

torchinfo库中的summary函数打印的结果如下:

===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
Network                                       [32, 4]                   --
├─Conv: 1-1                                   [32, 64, 113, 113]        --
│    └─Conv2d: 2-1                            [32, 64, 113, 113]        1,728
│    └─BatchNorm2d: 2-2                       [32, 64, 113, 113]        128
│    └─SiLU: 2-3                              [32, 64, 113, 113]        --
├─Conv: 1-2                                   [32, 128, 57, 57]         --
│    └─Conv2d: 2-4                            [32, 128, 57, 57]         73,728
│    └─BatchNorm2d: 2-5                       [32, 128, 57, 57]         256
│    └─SiLU: 2-6                              [32, 128, 57, 57]         --
├─C3: 1-3                                     [32, 128, 57, 57]         --
│    └─Conv: 2-7                              [32, 64, 57, 57]          --
│    │    └─Conv2d: 3-1                       [32, 64, 57, 57]          8,192
│    │    └─BatchNorm2d: 3-2                  [32, 64, 57, 57]          128
│    │    └─SiLU: 3-3                         [32, 64, 57, 57]          --
│    └─Conv: 2-8                              [32, 64, 57, 57]          --
│    │    └─Conv2d: 3-4                       [32, 64, 57, 57]          8,192
│    │    └─BatchNorm2d: 3-5                  [32, 64, 57, 57]          128
│    │    └─SiLU: 3-6                         [32, 64, 57, 57]          --
│    └─Sequential: 2-9                        [32, 64, 57, 57]          --
│    │    └─Bottleneck: 3-7                   [32, 64, 57, 57]          20,672
│    └─Conv: 2-10                             [32, 128, 57, 57]         --
│    │    └─Conv2d: 3-8                       [32, 128, 57, 57]         16,384
│    │    └─BatchNorm2d: 3-9                  [32, 128, 57, 57]         256
│    │    └─SiLU: 3-10                        [32, 128, 57, 57]         --
├─Conv: 1-4                                   [32, 256, 29, 29]         --
│    └─Conv2d: 2-11                           [32, 256, 29, 29]         294,912
│    └─BatchNorm2d: 2-12                      [32, 256, 29, 29]         512
│    └─SiLU: 2-13                             [32, 256, 29, 29]         --
├─C3: 1-5                                     [32, 256, 29, 29]         --
│    └─Conv: 2-14                             [32, 128, 29, 29]         --
│    │    └─Conv2d: 3-11                      [32, 128, 29, 29]         32,768
│    │    └─BatchNorm2d: 3-12                 [32, 128, 29, 29]         256
│    │    └─SiLU: 3-13                        [32, 128, 29, 29]         --
│    └─Conv: 2-15                             [32, 128, 29, 29]         --
│    │    └─Conv2d: 3-14                      [32, 128, 29, 29]         32,768
│    │    └─BatchNorm2d: 3-15                 [32, 128, 29, 29]         256
│    │    └─SiLU: 3-16                        [32, 128, 29, 29]         --
│    └─Sequential: 2-16                       [32, 128, 29, 29]         --
│    │    └─Bottleneck: 3-17                  [32, 128, 29, 29]         82,304
│    └─Conv: 2-17                             [32, 256, 29, 29]         --
│    │    └─Conv2d: 3-18                      [32, 256, 29, 29]         65,536
│    │    └─BatchNorm2d: 3-19                 [32, 256, 29, 29]         512
│    │    └─SiLU: 3-20                        [32, 256, 29, 29]         --
├─Conv: 1-6                                   [32, 512, 15, 15]         --
│    └─Conv2d: 2-18                           [32, 512, 15, 15]         1,179,648
│    └─BatchNorm2d: 2-19                      [32, 512, 15, 15]         1,024
│    └─SiLU: 2-20                             [32, 512, 15, 15]         --
├─C3: 1-7                                     [32, 512, 15, 15]         --
│    └─Conv: 2-21                             [32, 256, 15, 15]         --
│    │    └─Conv2d: 3-21                      [32, 256, 15, 15]         131,072
│    │    └─BatchNorm2d: 3-22                 [32, 256, 15, 15]         512
│    │    └─SiLU: 3-23                        [32, 256, 15, 15]         --
│    └─Conv: 2-22                             [32, 256, 15, 15]         --
│    │    └─Conv2d: 3-24                      [32, 256, 15, 15]         131,072
│    │    └─BatchNorm2d: 3-25                 [32, 256, 15, 15]         512
│    │    └─SiLU: 3-26                        [32, 256, 15, 15]         --
│    └─Sequential: 2-23                       [32, 256, 15, 15]         --
│    │    └─Bottleneck: 3-27                  [32, 256, 15, 15]         328,448
│    └─Conv: 2-24                             [32, 512, 15, 15]         --
│    │    └─Conv2d: 3-28                      [32, 512, 15, 15]         262,144
│    │    └─BatchNorm2d: 3-29                 [32, 512, 15, 15]         1,024
│    │    └─SiLU: 3-30                        [32, 512, 15, 15]         --
├─Conv: 1-8                                   [32, 1024, 8, 8]          --
│    └─Conv2d: 2-25                           [32, 1024, 8, 8]          4,718,592
│    └─BatchNorm2d: 2-26                      [32, 1024, 8, 8]          2,048
│    └─SiLU: 2-27                             [32, 1024, 8, 8]          --
├─C3: 1-9                                     [32, 1024, 8, 8]          --
│    └─Conv: 2-28                             [32, 512, 8, 8]           --
│    │    └─Conv2d: 3-31                      [32, 512, 8, 8]           524,288
│    │    └─BatchNorm2d: 3-32                 [32, 512, 8, 8]           1,024
│    │    └─SiLU: 3-33                        [32, 512, 8, 8]           --
│    └─Conv: 2-29                             [32, 512, 8, 8]           --
│    │    └─Conv2d: 3-34                      [32, 512, 8, 8]           524,288
│    │    └─BatchNorm2d: 3-35                 [32, 512, 8, 8]           1,024
│    │    └─SiLU: 3-36                        [32, 512, 8, 8]           --
│    └─Sequential: 2-30                       [32, 512, 8, 8]           --
│    │    └─Bottleneck: 3-37                  [32, 512, 8, 8]           1,312,256
│    └─Conv: 2-31                             [32, 1024, 8, 8]          --
│    │    └─Conv2d: 3-38                      [32, 1024, 8, 8]          1,048,576
│    │    └─BatchNorm2d: 3-39                 [32, 1024, 8, 8]          2,048
│    │    └─SiLU: 3-40                        [32, 1024, 8, 8]          --
├─SPPF: 1-10                                  [32, 1024, 8, 8]          --
│    └─Conv: 2-32                             [32, 512, 8, 8]           --
│    │    └─Conv2d: 3-41                      [32, 512, 8, 8]           524,288
│    │    └─BatchNorm2d: 3-42                 [32, 512, 8, 8]           1,024
│    │    └─SiLU: 3-43                        [32, 512, 8, 8]           --
│    └─MaxPool2d: 2-33                        [32, 512, 8, 8]           --
│    └─MaxPool2d: 2-34                        [32, 512, 8, 8]           --
│    └─MaxPool2d: 2-35                        [32, 512, 8, 8]           --
│    └─Conv: 2-36                             [32, 1024, 8, 8]          --
│    │    └─Conv2d: 3-44                      [32, 1024, 8, 8]          2,097,152
│    │    └─BatchNorm2d: 3-45                 [32, 1024, 8, 8]          2,048
│    │    └─SiLU: 3-46                        [32, 1024, 8, 8]          --
├─Sequential: 1-11                            [32, 4]                   --
│    └─Linear: 2-37                           [32, 100]                 6,553,700
│    └─ReLU: 2-38                             [32, 100]                 --
│    └─Linear: 2-39                           [32, 4]                   404
===============================================================================================
Total params: 19,987,832
Trainable params: 19,987,832
Non-trainable params: 0
Total mult-adds (G): 64.43
===============================================================================================
Input size (MB): 19.27
Forward/backward pass size (MB): 2027.63
Params size (MB): 79.95
Estimated Total Size (MB): 2126.85
===============================================================================================

模型训练

编写训练函数

def train(train_loader, model, loss_fn, optimizer):
	model.train()
	train_loss, train_acc = 0, 0
	num_batches = len(train_loader)
	size = len(train_loader.dataset)

	for x, y in train_loader:
		x, y = x.to(device), y.to(device)

		pred = model(x)
		loss = loss_fn(pred, y)

		optimizer.zero_grad()
		loss.backward()
		optimizer.step()

		train_loss += loss.item()
		train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()

	train_loss /= num_batches
	train_acc /= size

	return train_loss, train_acc

def test(test_loader, model, loss_fn):
	model.eval()
	test_loss, test_acc = 0, 0
	num_batches = len(test_loader)
	size = len(test_loader.dataset)

	with torch.no_grad():
		for x, y in test_loader:
			x, y = x.to(device), y.to(device)

			pred = model(x)
			loss = loss_fn(pred, y)

			test_loss += loss.item()
			test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()

	test_loss /= num_batches
	test_acc /= size

	return test_loss, test_acc

开始模型的训练

epochs = 60
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4)
best_acc = 0
best_model_path = 'best_p9_model.pth'

train_loss, train_acc = [], []
test_loss, test_acc = [], []

for epoch in range(epochs):
	epoch_train_loss, epoch_train_acc = train(train_loader, model, loss_fn, optimizer)
	epoch_test_loss, epoch_test_acc = test(test_loader, model, loss_fn)

	if best_acc < epoch_test_acc:
		best_acc = epoch_test_acc
		best_model = copy.deepcopy(model)

	train_loss.append(epoch_train_loss)
	train_acc.append(epoch_train_acc)
	test_loss.append(epoch_test_loss)
	test_acc.append(epoch_test_acc)

	lr = optimizer.state_dict()['param_groups'][0]['lr']

	print(f"Epoch: {epoch+1}, TrainLoss: {epoch_train_loss:.3f}, TrainAcc: {epoch_train_acc*100:.1f},TestLoss: {epoch_test_loss:.3f}, TestAcc: {epoch_test_acc*100:.1f}, learning_rate: {lr}")
print(f"training finished, save best model to : {best_model_path})")
torch.save(best_model.state_dict(), best_model_path)
print("done")

训练过程打印日志如下

Epoch: 1, TrainLoss: 0.986, TrainAcc: 57.2,TestLoss: 2.137, TestAcc: 25.3, learning_rate: 0.0001
Epoch: 2, TrainLoss: 0.725, TrainAcc: 76.2,TestLoss: 0.486, TestAcc: 87.6, learning_rate: 0.0001
Epoch: 3, TrainLoss: 0.368, TrainAcc: 84.7,TestLoss: 0.310, TestAcc: 87.6, learning_rate: 0.0001
Epoch: 4, TrainLoss: 0.295, TrainAcc: 89.9,TestLoss: 0.329, TestAcc: 90.7, learning_rate: 0.0001
Epoch: 5, TrainLoss: 0.407, TrainAcc: 87.2,TestLoss: 0.288, TestAcc: 88.9, learning_rate: 0.0001
Epoch: 6, TrainLoss: 0.316, TrainAcc: 89.4,TestLoss: 0.354, TestAcc: 89.8, learning_rate: 0.0001
Epoch: 7, TrainLoss: 0.347, TrainAcc: 92.1,TestLoss: 0.244, TestAcc: 92.9, learning_rate: 0.0001
Epoch: 8, TrainLoss: 0.206, TrainAcc: 93.1,TestLoss: 0.313, TestAcc: 94.2, learning_rate: 0.0001
Epoch: 9, TrainLoss: 0.204, TrainAcc: 92.4,TestLoss: 0.227, TestAcc: 90.2, learning_rate: 0.0001
Epoch: 10, TrainLoss: 0.151, TrainAcc: 95.4,TestLoss: 0.242, TestAcc: 92.9, learning_rate: 0.0001
Epoch: 11, TrainLoss: 0.146, TrainAcc: 95.6,TestLoss: 0.314, TestAcc: 88.9, learning_rate: 0.0001
Epoch: 12, TrainLoss: 0.223, TrainAcc: 91.7,TestLoss: 0.769, TestAcc: 92.0, learning_rate: 0.0001
Epoch: 13, TrainLoss: 0.155, TrainAcc: 95.2,TestLoss: 0.223, TestAcc: 92.4, learning_rate: 0.0001
Epoch: 14, TrainLoss: 0.267, TrainAcc: 93.9,TestLoss: 0.280, TestAcc: 93.3, learning_rate: 0.0001
Epoch: 15, TrainLoss: 0.194, TrainAcc: 93.3,TestLoss: 0.345, TestAcc: 89.3, learning_rate: 0.0001
Epoch: 16, TrainLoss: 0.283, TrainAcc: 91.3,TestLoss: 0.267, TestAcc: 92.4, learning_rate: 0.0001
Epoch: 17, TrainLoss: 0.183, TrainAcc: 94.3,TestLoss: 1.779, TestAcc: 84.4, learning_rate: 0.0001
Epoch: 18, TrainLoss: 0.161, TrainAcc: 95.7,TestLoss: 0.279, TestAcc: 90.7, learning_rate: 0.0001
Epoch: 19, TrainLoss: 0.100, TrainAcc: 95.7,TestLoss: 0.249, TestAcc: 93.8, learning_rate: 0.0001
Epoch: 20, TrainLoss: 0.134, TrainAcc: 97.0,TestLoss: 0.252, TestAcc: 91.1, learning_rate: 0.0001
Epoch: 21, TrainLoss: 0.236, TrainAcc: 94.0,TestLoss: 0.264, TestAcc: 88.0, learning_rate: 0.0001
Epoch: 22, TrainLoss: 0.199, TrainAcc: 93.1,TestLoss: 0.251, TestAcc: 94.7, learning_rate: 0.0001
Epoch: 23, TrainLoss: 0.243, TrainAcc: 95.2,TestLoss: 0.425, TestAcc: 88.0, learning_rate: 0.0001
Epoch: 24, TrainLoss: 0.181, TrainAcc: 94.8,TestLoss: 0.390, TestAcc: 86.7, learning_rate: 0.0001
Epoch: 25, TrainLoss: 0.138, TrainAcc: 97.4,TestLoss: 0.337, TestAcc: 91.1, learning_rate: 0.0001
Epoch: 26, TrainLoss: 0.212, TrainAcc: 96.6,TestLoss: 0.358, TestAcc: 90.2, learning_rate: 0.0001
Epoch: 27, TrainLoss: 0.289, TrainAcc: 92.4,TestLoss: 0.239, TestAcc: 94.2, learning_rate: 0.0001
Epoch: 28, TrainLoss: 0.220, TrainAcc: 95.6,TestLoss: 0.280, TestAcc: 88.4, learning_rate: 0.0001
Epoch: 29, TrainLoss: 0.177, TrainAcc: 95.6,TestLoss: 0.216, TestAcc: 92.9, learning_rate: 0.0001
Epoch: 30, TrainLoss: 0.116, TrainAcc: 96.3,TestLoss: 0.240, TestAcc: 92.0, learning_rate: 0.0001
Epoch: 31, TrainLoss: 0.065, TrainAcc: 98.0,TestLoss: 0.230, TestAcc: 92.4, learning_rate: 0.0001
Epoch: 32, TrainLoss: 0.097, TrainAcc: 98.0,TestLoss: 0.261, TestAcc: 92.9, learning_rate: 0.0001
Epoch: 33, TrainLoss: 0.084, TrainAcc: 97.9,TestLoss: 0.262, TestAcc: 92.0, learning_rate: 0.0001
Epoch: 34, TrainLoss: 0.113, TrainAcc: 96.2,TestLoss: 0.257, TestAcc: 95.1, learning_rate: 0.0001
Epoch: 35, TrainLoss: 0.071, TrainAcc: 97.8,TestLoss: 0.284, TestAcc: 92.0, learning_rate: 0.0001
Epoch: 36, TrainLoss: 0.238, TrainAcc: 95.2,TestLoss: 0.210, TestAcc: 92.0, learning_rate: 0.0001
Epoch: 37, TrainLoss: 0.175, TrainAcc: 96.9,TestLoss: 0.259, TestAcc: 92.9, learning_rate: 0.0001
Epoch: 38, TrainLoss: 0.129, TrainAcc: 95.8,TestLoss: 0.315, TestAcc: 92.0, learning_rate: 0.0001
Epoch: 39, TrainLoss: 0.077, TrainAcc: 98.0,TestLoss: 0.233, TestAcc: 91.6, learning_rate: 0.0001
Epoch: 40, TrainLoss: 0.092, TrainAcc: 97.3,TestLoss: 0.266, TestAcc: 89.3, learning_rate: 0.0001
Epoch: 41, TrainLoss: 0.064, TrainAcc: 98.0,TestLoss: 0.248, TestAcc: 92.0, learning_rate: 0.0001
Epoch: 42, TrainLoss: 0.062, TrainAcc: 99.2,TestLoss: 0.211, TestAcc: 93.3, learning_rate: 0.0001
Epoch: 43, TrainLoss: 0.098, TrainAcc: 97.2,TestLoss: 0.359, TestAcc: 90.7, learning_rate: 0.0001
Epoch: 44, TrainLoss: 0.153, TrainAcc: 97.0,TestLoss: 0.411, TestAcc: 89.3, learning_rate: 0.0001
Epoch: 45, TrainLoss: 0.234, TrainAcc: 96.9,TestLoss: 0.198, TestAcc: 92.0, learning_rate: 0.0001
Epoch: 46, TrainLoss: 0.042, TrainAcc: 98.6,TestLoss: 0.191, TestAcc: 93.3, learning_rate: 0.0001
Epoch: 47, TrainLoss: 0.033, TrainAcc: 98.9,TestLoss: 0.141, TestAcc: 96.9, learning_rate: 0.0001
Epoch: 48, TrainLoss: 0.012, TrainAcc: 99.7,TestLoss: 0.202, TestAcc: 94.7, learning_rate: 0.0001
Epoch: 49, TrainLoss: 0.016, TrainAcc: 99.1,TestLoss: 0.171, TestAcc: 93.8, learning_rate: 0.0001
Epoch: 50, TrainLoss: 0.011, TrainAcc: 99.6,TestLoss: 0.274, TestAcc: 93.8, learning_rate: 0.0001
Epoch: 51, TrainLoss: 0.014, TrainAcc: 99.8,TestLoss: 0.233, TestAcc: 94.2, learning_rate: 0.0001
Epoch: 52, TrainLoss: 0.263, TrainAcc: 98.7,TestLoss: 0.233, TestAcc: 91.6, learning_rate: 0.0001
Epoch: 53, TrainLoss: 0.284, TrainAcc: 92.7,TestLoss: 0.680, TestAcc: 92.9, learning_rate: 0.0001
Epoch: 54, TrainLoss: 0.334, TrainAcc: 90.9,TestLoss: 0.332, TestAcc: 91.1, learning_rate: 0.0001
Epoch: 55, TrainLoss: 0.261, TrainAcc: 94.4,TestLoss: 0.498, TestAcc: 90.7, learning_rate: 0.0001
Epoch: 56, TrainLoss: 0.144, TrainAcc: 95.9,TestLoss: 0.376, TestAcc: 88.4, learning_rate: 0.0001
Epoch: 57, TrainLoss: 0.080, TrainAcc: 97.3,TestLoss: 0.296, TestAcc: 92.4, learning_rate: 0.0001
Epoch: 58, TrainLoss: 0.033, TrainAcc: 99.2,TestLoss: 0.226, TestAcc: 93.3, learning_rate: 0.0001
Epoch: 59, TrainLoss: 0.023, TrainAcc: 99.0,TestLoss: 0.327, TestAcc: 93.8, learning_rate: 0.0001
Epoch: 60, TrainLoss: 0.073, TrainAcc: 98.0,TestLoss: 0.347, TestAcc: 90.7, learning_rate: 0.0001
training finished, save best model to : best_p9_model.pth)
done

训练过程图表展示

epoch_ranges = range(epochs)

plt.figure(figsize=(20, 4))
plt.subplot(121)
plt.plot(epoch_ranges, train_loss, label='train loss')
plt.plot(epoch_ranges, test_loss, label='validation loss')
plt.legend(loc='upper right')
plt.title('Loss')

plt.subplot(122)
plt.plot(epoch_ranges, train_acc, label='train accuracy')
plt.plot(epoch_ranges, test_acc, label='validation accuracy')
plt.legend(loc='lower right')
plt.title('Accuracy')

训练过程

模型效果展示

载入最佳模型

model.load_state_dict(torch.load(best_model_path))
model.to(device)

编写预测函数

def predict(model, image_path):
	image = Image.open(image_path)
	image = img_transform(image)
	image = image.unsqueeze(0).to(device)
	model.eval()
	with torch.no_grad():
		pred = model(image)
	return class_names[pred.argmax(1).item()]

执行预测并展示

评估应当只用测试集中的数据,这里没有再使用数据集进行反归一化,会有一部分训练集中的数据参与其中,导致预测的结果非常好(可能是假象)

plt.figure(figsize=(20, 4))
for i in range(20):
	plt.subplot(2, 10, i+1)
	image = random.choice(image_list)
	real_label = image.parts[-2]
	pred_label = predict(model, str(image))
	plt.title(f"R:{real_label}, P:{pred_label}")
	plt.axis('off')
	plt.imshow(Image.open(str(image)))

执行预测

总结与心得体会

  • YOLOv5的骨干网络中大量使用了1x1卷积,只用来将特征图重新映射到不同通道的特征图中,执行效率比执行大核卷积快
  • 骨干网络中特征图大小的缩减并没用像普通的卷积网络一样使用池化层,而是使用卷积通过调整stride和padding属性来实现,这样做会比直接使用池化层多一些可训练参数,可能会增加一些模型的拟合能力
  • 通过本次任务学习到了跳跃连接应该怎样编写代码,还有SPPF模块的实现
  • 模型的评估应该不包含训练集中的数据,不然展示的结果并不真实

http://www.niftyadmin.cn/n/5058183.html

相关文章

算法 最小覆盖子串-(双指针)

牛客网: BM90 题目: 在字符串s中找出包含t中所有字符的最小连续子串 思路: 初始化t中字符量计数map, 遍历t中每个字符&#xff0c;每遇到一个递减1&#xff1b;设置检测函数f&#xff0c;即m中所有key的值都不小于0&#xff1b;初始化双指针slow, fast 0, 0&#xff1b;left…

CEC2013:CEC2013测试函数及多种智能优化算法求解CEC2013对比

一、CEC2013测试函数 CEC2013&#xff0c;该测试集合也是目前高质量论文应用较广泛的测试集&#xff0c;CEC2013测试集函数复杂&#xff0c;非常具有挑战力。 二、多种智能优化算法求解CEC2013 2.1 本文参与求解CEC2013的智能优化算法 本文选取一些经典的智能优化算法参与测…

基于Spider的全站数据爬取

踩坑 一开始运行的时候会出来很多其他的日志信息&#xff0c;这里我忘了设置settings.py中LOG_LEVELERROR 获取xpath 这里获取xpath比较简单。 首先发现所有的照片文字都是在li标签下的&#xff0c;所以第一步是获取所有的li标签&#xff0c;得到li标签的列表。 li_list re…

网站服务器怎么部署

网站服务器怎么部署 1. 选择合适的服务器&#xff1a;根据网站的需求和流量&#xff0c;选择合适的服务器&#xff0c;包括硬件配置、操作系统和网络环境等。 2. 安装操作系统&#xff1a;根据服务器硬件配置选择合适的操作系统&#xff0c;并进行安装和配置&#xff0c;包括安…

java mongodb 并表 group 查询 Bson

对mongodb的使用中&#xff0c;需要将发生额表occr期初表open表&#xff0c;进行union的并表操作后&#xff0c;再进行group&#xff0c;sum&#xff0c;排序&#xff0c;分页操作。 查询了一番后&#xff0c;mongodb4.4版本后&#xff0c;新增了一个管道符&#xff0c;$union…

在Spring Boot项目中使用Redisson

在Spring Boot项目中使用Redisson Redisson简介 Redisson官网仓库 Redisson中文文档 Redission是一个基于Java的分布式缓存和分布式任务调度框架&#xff0c;用于处理分布式系统中的缓存和任务队列。它是一个开源项目&#xff0c;旨在简化分布式系统的开发和管理。 以下是…

集约管控、按需分配:和鲸聚焦 AI for Science 科研算力高校调配

随着人类社会进入信息时代的智能化阶段&#xff0c;数据逐渐成为基础生产要素之一&#xff0c;而算力也因此成为重要生产力。《学习时报》9 月 3 日发文《算力为何如此重要》&#xff0c;文中指出&#xff0c;人工智能技术的突破与产业数字化应用对算力提出了更高的要求&#x…

Redis代码实践总结(三)——redis持久化

Redis如何将数据写入磁盘 持久性是指将数据写入持久存储&#xff0c;例如固态磁盘 (SSD)。Redis 提供了一系列持久性选项。这些包括&#xff1a; RDB&#xff08;Redis 数据库&#xff09;&#xff1a;RDB 持久性以指定的时间间隔执行数据集的时间点快照。AOF&#xff08;仅追…